
http://elastest.io

A Proposal to 
Orchestrate Test Cases

Funded by the 
European Union

Boni García
boni.garcia@urjc.es

11th International Conference on the Quality of Information 
and Communications Technology (QUATIC 2018)

September 5th 2018 | Coimbra, Portugal

mailto:boni.garcia@urjc.es


Table of contents

1. Introduction
2. Test orchestration approaches
3. ElasTest: platform for end-to-end testing
4. ElasTest Orchestration Engine
5. Case study: testing WebRTC applications
6. Conclusions and future work

2



1. Introduction

• Large distributed heterogenous systems are more 
and more common (e.g. microservices 
architectures, cloud native apps, etc.)

• Testing this kind of software is complex, especially 
to verify the system as a whole

3

End-to-end testing
happens at system 

level with users 
impersonated



1. Introduction

• In ElasTest, we hypothesize that test cases can 
be organized to create a complex test scenarios 
(“divide and conquer” principle)

• We understand the concept of test orchestration
as a novel way to select, order, and execute a 
group of tests

• To that aim, different steps are considered:
1. Topology generation: to define a graph of tests
2. Test augmentation: to reproduce custom operational 

conditions of the SUT

4



Table of contents

1. Introduction
2. Test orchestration approaches
3. ElasTest: platform for end-to-end testing
4. ElasTest Orchestration Engine
5. Case study: testing WebRTC applications
6. Conclusions and future work

5



2. Test orchestration approaches

• In this stage of the project we have focused in the 
topology generation problem

• We propose two different approaches for 
orchestrating tests:

1. Verdict-driven orchestration, i.e. connecting testing 
jobs (TJobs) using its verdict (i.e., passed or failed) 
as boolean condition

2. Data-driven orchestration, i.e. connecting TJobs 
using the test data (input) and test outcomes (output) 
handled internally by tests

6



2. Test orchestration approaches

1. Verdict-driven orchestration
• TJobs are considered black-boxes, 

since we only know its result 
(verdict)

• All TJobs are executed without a 
given ordering

• Using a topology notation, we can 
select and order a group of TJobs

• We can also execute in parallel a 
group of TJobs

7



2. Test orchestration approaches

2. Data-driven orchestration
• In addition to the verdict, in this 

schema we consider the input 
and output data in the TJobs

• This kind of TJobs coexists with 
the previous type (black-box)

• We use the same topology 
notation to select and order a 
group of TJobs

• The output data of TJobs is used 
to feed next level in the graph

8



Table of contents

1. Introduction
2. Test orchestration approaches
3. ElasTest: platform for end-to-end testing
4. ElasTest Orchestration Engine
5. Case study: testing WebRTC applications
6. Conclusions and future work

9



3. ElasTest: platform for end-to-end testing

• ElasTest is an open source platform aimed to 
ease the end-to-end testing activities for different 
types of distributed applications and services

• ElasTest manages the full testing lifecycle, 
deploying and monitoring the SUT, executing the 
end-to-end tests and exposing the results to 
software engineers and testers

10

http://elastest.io/

http://elastest.io/


3. ElasTest: platform for end-to-end testing

• ElasTest architecture:

11



Table of contents

1. Introduction
2. Test orchestration approaches
3. ElasTest: platform for end-to-end testing
4. ElasTest Orchestration Engine
5. Case study: testing WebRTC applications
6. Conclusions and future work

12



4. ElasTest Orchestration Engine

• The ElasTest Orchestration Engine (EOE) is the 
component responsible of implementing our 
concept of orchestration within ElasTest (i.e. 
select, order, and execute a group of tests)

• We use the pipelines Jenkins notation as a 
basis for the topology generation

• It has been implemented as a shared library 
which exposes a simple API to orchestrate jobs in 
Jenkins

• Note that ElasTest’s testing jobs (TJobs) can be 
executed also as Jenkins jobs

13



4. ElasTest Orchestration Engine

• The orchestrator library API is summarized in the 
following table:

14

Method Description

runJob(String jobId) Method to run a job given its identifier (jobId).This 
method returns a boolean value: true if the execution 

of the job finishes correctly and false if fails

runJobDependingOn(boolean 
verdict, String job1Id, String 

job2Id)

Method allows to run one job given a boolean value 
(typically a verdict from another job). This boolean 

value is passes in the first argument (called verdict in 
the method signature). If this value job with identifier 
job1Id is executed. Otherwise it is executed job2Id

runJobsInParallel(String... 
jobs)

This method allows to run a set of jobs in parallel. The 
jobs identifier are passes using a variable number of 

arguments (varargs)



4. ElasTest Orchestration Engine

• The exit condition for the orchestrated job can be 
configured:

• The verdict of a group of parallel jobs can be also 
configured:

15

Method Description

EXIT_AT_END The orchestration finishes at the end (option by default)

EXIT_ON_FAIL The orchestration finishes when any of the TJobs fail

EXIT_ON_PARALLEL_FAILURE The orchestration finishes when any a set of parallel TJobs fail

Method Description

AND The verdict of a set of jobs executed in parallel is true only if all the jobs finish correctly

OR The verdict of parallel jobs is true when at least one of the jobs finishes correctly



4. ElasTest Orchestration Engine

• Example on the orchestration library usage:

16

@Library('OrchestrationLib') _

// Config
orchestrator.setContext(this)
orchestrator.setParallelResultStrategy(ParallelResultStrategy.OR)
orchestrator.setExitCondition(OrchestrationExitCondition.EXIT_ON_PARALLEL_FAILURE)

// Graph
def result1 = orchestrator.runJob('myjob1')
def result2 = orchestrator.runJobDependingOn(result1, 'myjob2', 'myjob3')
def result3 = orchestrator.runJob('myjob4')
def result4 = orchestrator.runJobsInParallel('myjob5', 'myjob6')

if (result4) {
orchestrator.runJob('myjob7')

}
else {
orchestrator.runJob('myjob8')

}



Table of contents

1. Introduction
2. Test orchestration approaches
3. ElasTest: platform for end-to-end testing
4. ElasTest Orchestration Engine
5. Case study: testing WebRTC applications
6. Conclusions and future work

17



5. Case study: testing WebRTC applications

• WebRTC is the umbrella term for a number of 
technologies aimed to bring Real Time 
Communications to the Web 

• W3C (JavaScript APIs): getUserMedia, 
PeerConnection, DataChannels

• IETF (protocol stack): ICE, SDP, TURN, STUN, …

18



5. Case study: testing WebRTC applications

• Our case study is based on 
OpenVidu, an open source 
videoconferencing WebRTC 
framework

• Question driving this study: 
“Is the orchestration 
approach presented in this 
paper capable of improving 
somehow the testing process 
of an existing test suite?”

19
http://openvidu.io/

http://openvidu.io/


5. Case study: testing WebRTC applications

20

Relevant reduction of time to be
executed compared to the original suite



Table of contents

1. Introduction
2. Background
3. ElasTest: platform for end-to-end testing
4. ElasTest Orchestration Engine
5. Case study: testing WebRTC applications
6. Conclusions and future work

21



6. Conclusions and future work

• ElasTest is an open source platform aimed to 
ease end-to-end tests for heterogenous large 
distributed systems

• In ElasTest we are implementing the concept of 
test orchestration understood as a novel way to 
select, order, and execute a group of tests

• The topology generation for orchestrated test is 
based in the Jenkins pipeline notation

• In the near future we plan to extend our approach 
in different ways: data-driven orchestration and 
test augmentation

22


	Slide Number 1
	Table of contents
	1. Introduction
	1. Introduction
	Table of contents
	2. Test orchestration approaches
	2. Test orchestration approaches
	2. Test orchestration approaches
	Table of contents
	3. ElasTest: platform for end-to-end testing
	3. ElasTest: platform for end-to-end testing
	Table of contents
	4. ElasTest Orchestration Engine
	4. ElasTest Orchestration Engine
	4. ElasTest Orchestration Engine
	4. ElasTest Orchestration Engine
	Table of contents
	5. Case study: testing WebRTC applications
	5. Case study: testing WebRTC applications
	5. Case study: testing WebRTC applications
	Table of contents
	6. Conclusions and future work

