* 4 Kk

&S

ElasTest

Funded by the
European Union

A Proposal to
Orchestrate Test Cases

Boni Garcia
boni.garcia@urjc.es

11th International Conference on the Quality of Information
_ and Communications Technology (QUATIC 2018)
http://elastest.io September 5t 2018 | Coimbra, Portugal

mailto:boni.garcia@urjc.es

Table of contents N

Introduction

Test orchestration approaches

ElasTest: platform for end-to-end testing
ElasTest Orchestration Engine

Case study: testing WebRTC applications
Conclusions and future work

OOk~

1. Introduction

» Large distributed heterogenous systems are more
and more common (e.g. microservices
architectures, cloud native apps, etc.)

* Testing this kind of software is complex, especially
to verify the system as a whole

End-to-end testing
happens at system
level with users
impersonated

User testing
(Validation)

o &0

Development E I a S

testing
(Verification)

1. Introduction

* In ElasTest, we hypothesize that test cases can
be organized to create a complex test scenarios
(“divide and conquer” principle)

* We understand the concept of test orchestration
as a novel way to select, order, and execute a
group of tests

 To that aim, different steps are considered:
1. Topology generation: to define a graph of tests

2. Test augmentation: to reproduce custom operational
conditions of the SUT

Table of contents

2. Test orchestration approaches

2. Test orchestration approaches C%

* In this stage of the project we have focused in the
topology generation problem

* We propose two different approaches for
orchestrating tests:

1. Verdict-driven orchestration, i.e. connecting testing
jobs (TJobs) using its verdict (i.e., passed or failed)
as boolean condition

2. Data-driven orchestration, i.e. connecting TJobs
using the test data (input) and test outcomes (output)
handled internally by tests

2. Test orchestration approaches C%

1, verdict-driven Orchestration a) Black-box T-Job e

 TJobs are considered black-boxes, v
since we only know its result —
(verdict) cases | | @) o° o
« All TJobs are executed without a O
given ordering 90 0

* Using a topology notation, we can | avericaiven | @ verdictdrven

test orchestration test orchestration

select and order a group of TJobs with parallelzaton
* We can also execute in parallel a z i

group of TJobs o
JCEOA
.

2. Test orchestration approaches

a) T-Job with /O

2. Data-driven orchestration

 In addition to the verdict, in this
schema we consider the input
and output data in the TJobs b)T-lobsin

. This kind of TJobs coexists with
the previous type (black-box)

* We use the same topology

notation to select and order a et 'i’m”:"im"":':’;m:‘;; ™
group of TJobs & r
* The output data of TJobs is used i
to feed next level in the graph ?
¢ 9
[V] N

© 0 @&
o O

8

Table of contents N

3. ElasTest: platform for end-to-end testing

3. ElasTest: platform for end-to-end testing C%

» ElasTest is an open source platform aimed to
ease the end-to-end testing activities for different
types of distributed applications and services

» ElasTest manages the full testing lifecycle,
deploying and monitoring the SUT, executing the
end-to-end tests and exposing the results to
software engineers and testers

&

Elas

http://elastest.io/

10

http://elastest.io/

3. ElasTest: platform for end-to-end testing C%

 ElasTest architecture:

Toolbox ETM Jenkins
(ET) P GUI g Hug|n(E..l}|@
Service o -~
'.

Manager -

R R
HTPO) g WS HTPO o O (ESM) Sge
i Ul) External E I a S
Instrumentation : e
Manager (EIM)]
! | Agent W1
Tests . R A E
Manager € spring Q{glogstash MaRabbitMQ = 0
(ETM) - Y A R — el .
S onN| i }
ﬁg + (# 1 cUs | %: TS
H Recomm Orchestr E E ! E
i endation B et ator i (g q:) : i
E Engine I(EE(%'ET I{EE?;E? Engine \ : i i
; i TJob i i] Tdob
E (ERE) (EOE) E ; Db Lo G i E = (@]
| (} {) (l | B | | :
" o ||
Monitoring i E i
Platform | | piatiorm Data Manager Logs Files ' EMS -~] ! sSUT
{EMP) Manager (EDM) My ‘aOl - Metncs Ay aLLuxio \ u p 3 \
EPM N .
spooo | | EPM) e ey

— L
&> docker = openstack. kubernetes 25amazon

11

Table of contents

4. ElasTest Orchestration Engine

12

4. ElasTest Orchestration Engine C%

* The ElasTest Orchestration Engine (EOE) is the
component responsible of implementing our
concept of orchestration within ElasTest (i.e.
select, order, and execute a group of tests)

* We use the pipelines Jenkins notation as a
basis for the topology generation

* [t has been implemented as a shared library
which exposes a simple API to orchestrate jobs in
Jenkins

* Note that ElasTest’s testing jobs (TJobs) can be
executed also as Jenkins jobs

4. ElasTest Orchestration Engine C%

* The orchestrator library APl is summarized in the
following table:

runJob(String jobId) Method to run a job given its identifier (jobld).This
method returns a boolean value: frue if the execution
of the job finishes correctly and false if fails

runJobDependingOn(boolean Method allows to run one job given a boolean value
verdict, String joblId, String (typically a verdict from another job). This boolean
job2Id) value is passes in the first argument (called verdict in

the method signature). If this value job with identifier
Jjob1ld is executed. Otherwise it is executed job2/d

runJobsInParallel(String... This method allows to run a set of jobs in parallel. The
jobs) jobs identifier are passes using a variable number of
arguments (varargs)

14

4. ElasTest Orchestration Engine C%

* The exit condition for the orchestrated job can be

EXIT_AT_END The orchestration finishes at the end (option by default)
EXIT_ON_FAIL The orchestration finishes when any of the TJobs fail
EXIT_ON_PARALLEL_FAILURE The orchestration finishes when any a set of parallel TJobs fail

* The verdict of a group of parallel jobs can be also

AND The verdict of a set of jobs executed in parallel is frue only if all the jobs finish correctly
OR The verdict of parallel jobs is frue when at least one of the jobs finishes correctly

15

4. ElasTest Orchestration Engine C/J

« Example on the orchestration library usage:

@Library('OrchestrationLib') _

// Config

orchestrator.setContext(this)
orchestrator.setParallelResultStrategy(ParallelResultStrategy.OR)
orchestrator.setExitCondition(OrchestrationExitCondition.EXIT_ON_PARALLEL_ FAILURE)

// Graph

def resultl
def result2
def result3
def result4

orchestrator.runJob('myjobl")
orchestrator.runJobDependingOn(resultl, 'myjob2', 'myjob3')
orchestrator.runJob('myjob4")
orchestrator.runJobsInParallel('myjob5', 'myjob6')

if (result4) {
orchestrator.runJob('myjob7")

}

else {
orchestrator.runJob('myjob8")

}

16

Table of contents

5. Case study: testing WebRTC applications

17

5. Case study: testing WebRTC applications C%

* WebRTC is the umbrella term for a number of
technologies aimed to bring Real Time
Communications to the Web

« W3C (JavaScript APIs): getUserMedia,
PeerConnection, DataChannels

* |[ETF (protocol stack): ICE, SDP, TURN, STUN,

.c-ﬁ-q

18

5. Case study: testing WebRTC applications C%

* Our case study is based on

q openVidu Server

OpenVidu, an open source .\
videoconferencing WebRTC o
framework ‘

 Question driving this study:
“Is the orchestration T 513
approach presented in this A AR 4
paper capable of improving =+
somehow the testing process LJ openVidu Browser

of an existing test suite?”
3 openVidu

http://openvidu.io/
19

http://openvidu.io/

Jenkins full-teaching-orchestration +

4 Back to Dashboard

O, status

"= Changes

_@ Build Now

(Delete Pipeline

4% configure

O} Full Stage View

© Fipeine Syntax

Build History trend =
find X
@ #3 Apr 27, 2018 418 PM
o #2 Apr 27, 2018 417 PM
[* il Apr 27,2013 411 PM

) RSS for all () RSS for failures

5. Case study: testing WebRTC applications

Pipeline full-teaching-orchestration

uoncosa,
| = Recent Changes
e

Stage View

Apr27 No
Changes

16:18

Apr 27 No
Changes

16:17

Apr27 No
Changes

16:11

full-teaching-

functional-
full-teaching- session, full-
- teaching-
functional- .
smoke functional-user,
fullteaching-
functional-
comment
255 1min 25s
——
25s 1min 26s
24s
failed
26s 1min 24s

20

Table of contents

6. Conclusions and future work

21

6. Conclusions and future work ¢¥ 5

» ElasTest is an open source platform aimed to
ease end-to-end tests for heterogenous large
distributed systems

* In ElasTest we are implementing the concept of
test orchestration understood as a novel way to
select, order, and execute a group of tests

* The topology generation for orchestrated test is
based in the Jenkins pipeline notation

* [n the near future we plan to extend our approach
in different ways: data-driven orchestration and
test augmentation

	Slide Number 1
	Table of contents
	1. Introduction
	1. Introduction
	Table of contents
	2. Test orchestration approaches
	2. Test orchestration approaches
	2. Test orchestration approaches
	Table of contents
	3. ElasTest: platform for end-to-end testing
	3. ElasTest: platform for end-to-end testing
	Table of contents
	4. ElasTest Orchestration Engine
	4. ElasTest Orchestration Engine
	4. ElasTest Orchestration Engine
	4. ElasTest Orchestration Engine
	Table of contents
	5. Case study: testing WebRTC applications
	5. Case study: testing WebRTC applications
	5. Case study: testing WebRTC applications
	Table of contents
	6. Conclusions and future work

