&S

ElasTest

Funded by the
European Union

User Impersonation as
a Service in End-to-End
Testing

Boni Garcia
boni.garcia@urjc.es

_ MODELSWARD Special Sessions (AMARETTO 2018)
http://elastest.io January 23 2018 | Funchal, Portugal

mailto:boni.garcia@urjc.es

Table of contents

1.
2.
3.
4.
D.
6.

Introduction

Background

ElasTest: platform for end-to-end testing
User Impersonation as a Service

Case study: testing WebRTC applications
Conclusions and future work

1. Introduction

 Large distributed heterogenous systems are more
and more common (e.g. microservices
architectures, cloud native apps, etc.)

 Testing this kind of software is complex, especially
to verify the system as a whole

End-to-end testing
happens at system
level with users
impersonated

User testing
(Validation)

o &5

Development E I a S

testing
(Verification)

Table of contents

2. Background

2. Background

e Recent surveys confirm
the existence of gap
between the current
and the desired status
of test automation for
distributed
heterogeneous
systems, prioritizing the
relevance of test
automation features for
these systems
(Lima, 2016)

WHAT IS THE LEVEL OF TEST AUTOMATION FOR
DISTRIBUTED AND HETEROGENEOUS SYSTEMS?

B Only manual testing
W Automatic test execution (with manual test scripting/coding)

B Automatic test generation (with manual execution)

B Automatic test generation and execution

2. Background

 The main mechanism used in the current state-of-
the-art for the functional testing of web and mobile
applications consists on impersonating a user
through some kind of GUI automation

e Selenium Is the most popular solution:

script

Server

JSON Wire Protocol /
W3C WebDriver
WebDriver

Table of contents

3. ElasTest: platform for end-to-end testing

3. ElasTest: platform for end-to-end testing CZ‘)

e ElasTest is an open source platform aimed to
ease the end-to-end testing activities for different
types of distributed applications and services

» ElasTest manages the full testing lifecycle,
deploying and monitoring the SUT, executing the
end-to-end tests and exposing the results to
software engineers and testers

&

Elas

http://elastest.io/

http://elastest.io/

3. ElasTest: platform for end-to-end testing CZ‘)

e ElasTest architecture:

~: ESM { 3
Command Line Jenkins fpe —C—— EUS [
pEEl =S Interface (CLI) Filigin @ . . 5
urte 7y R ws nre R ws HrTRy R WS CP !
%' + %' + +' + G —O— External SuT
Browser i
Instrumentation ¢ i
W TORM Mananger
(EIM) TJob
Executi
o () O Q

/ EMS E
Data Manager (EDM)]
" y

[SOL M L\] [0gs & mmm]E' s /A ALLuxi \ Queue Bl - Instrumentation

E R: abb|t Agent

— Platform Manager (EPM)

?
*docker £ openstack. -@ kubernetes i amazon C’J

ui webservices E I as

Table of contents

4. User Impersonation as a Service

10

4. User Impersonation as a Service C‘Z‘)

e ElasTest implements an user impersonation as a
service capability that provides Software as a
Service (SaaS) extending the W3C WebDriver
with advanced capabilities:

1. Evaluation of the perceived Quality of
Experience (QoE) of users on real-time
multimedia applications

2. Equivalent automation capability for sensors
and smart devices for Internet of Things (loT)

4. User Impersonation as a Service C‘Z‘)

e Extension to W3C WebDriver recommendation by
ElasTest User Impersonation Service:

Method |Path Description

POST /session/{sessionId}/element/{elementId}/event ﬁvuifﬁicnrig’ﬁé?e?ngeix,f” event
GET /session/{sessionId}/event/{subscriptionId} gi%ae?l]tsfcjeb;/grlrpgdg;event fora
DELETE |/session/{sessionId}/event/{subscriptionId} Remove a subscription

GET /session/{sessionId}/vnc Get remote session
DELETE |/session/{sessionId}/vnc Delete remote session
POST /session/{sessionId}/usermedia Set user media for WebRTC
GET /session/{sessionId}/stats Read the WebRTC stats

POST /session/{sessionId}/element/{elementId}/latency gﬂ\?\fesgﬁceggs'g%ﬁnd latency of

POST /session/{sessionId}/element/{elementId}/quality Sl)velggisé%re quality of a WebRTC

Table of contents

5. Case study: testing WebRTC applications

13

5. Case study: testing WebRTC applications C?_‘)

e WebRTC iIs the umbrella term for a number of
technologies aimed to bring Real Time
Communications to the Web

« W3C (JavaScript APIs): getUserMedia,
PeerConnection, DataChannels

* I[ETF (protocol stack): ICE, SDP, TURN, STUN, ...

=0~ @

14

5. Case study: testing WebRTC applications CZ‘)

e Our case study is based on

q openVidu Server

OpenVidu, an open source .
videoconferencing WebRTC Q s ®
framework] ®
e Question driving this study:

“Is the ElasTest user T EE
impersonation service A DoV
capable of improving the —— I
end-to-end testing process L operVidu Browser

within the OpenVidu

project?” openVidu

http://openvidu.io/

15

http://openvidu.io/

5. Case study: testing WebRTC applications Cl_‘)

e Demo

'o ElasTest ETM X

&« C 1t | @ Notsecure | demo2.elastest.io:37

Chrome 61 - automated test

1 Openvida Testap) 4 x
€ - G [Adarsecurs | Bips 17218018 B2 Tessessans

Chreme is being controlled by automated test softwane,

hitps 172 180148443 MY_SFCRET

8 Auto join 11 3
K

TestSession

comnecrrCraves
el G et

Send

Enter active

TestSession

Openvidu TestApp - Google Chrome

Table of contents

6. Conclusions and future work

17

6. Conclusions and future work ¢¥ 9

e ElasTest is an open source platform aimed to
ease end-to-end tests for heterogenous large
distributed systems

e ElasTest implements a User Impersonation as a
Service (UlaaS) extending the W3C WebDriver
recommendation

 EXisting test codebases with Selenium and
Appium are completely compatible with ElasTest

e Some features are still under development, such
as measurement of the end-users’ perceived QoE
or support for IoT devices

	Número de diapositiva 1
	Table of contents
	1. Introduction
	Table of contents
	2. Background
	2. Background
	Table of contents
	3. ElasTest: platform for end-to-end testing
	3. ElasTest: platform for end-to-end testing
	Table of contents
	4. User Impersonation as a Service
	4. User Impersonation as a Service
	Table of contents
	5. Case study: testing WebRTC applications
	5. Case study: testing WebRTC applications
	5. Case study: testing WebRTC applications
	Table of contents
	6. Conclusions and future work

