
Analysis of video quality and end-to-end 
latency in WebRTC

Boni García
Universidad Rey Juan Carlos (Spain)

boni.garcia@urjc.es

Fifth IEEE International Workshop on 
Quality of Experience for Multimedia Communications - QoEMC2016

IEEE GLOBECOM 2016 
Washington, DC USA, 8 December, 2016 



Analysis of video quality and end-to-end latency in WebRTC

Contents
1. Introduction
2. Testing Framework for WebRTC
3. Case Study: WebRTC broadcasting
4. Conclusions



1. Introduction
• WebRTC is the set umbrella term for a number of 

novel technologies having the ambition of bringing 
high-quality Real Time Communications to the Web 
– W3C (JavaScript APIs): getUserMedia, PeerConnection, 

DataChannels
– IETF (protocol stack): ICE, SDP, TURN, STUN, DTLS, …

Analysis of video quality and end-to-end latency in WebRTC



1. Introduction
• Kurento is an open source framework for WebRTC 

aimed to created applications with advance media 
capabilities (e.g. augmented reality, video content 
analysis)

• It is composed by a Media Server and a set of APIs 
• Kurento has been recently acquired by Twilio

Analysis of video quality and end-to-end latency in WebRTC



1. Introduction
• Based on our experience, we have created a testing 

framework for WebRTC applications
• This framework exposes high-level capabilities for 

testers, supported by a continuous delivery 
infrastructure for the DevOps team

Analysis of video quality and end-to-end latency in WebRTC



2. Testing Framework for WebRTC
• Kurento Testing Framework has been built upon 

well-known testing technologies, such as JUnit, 
Selenium, Jenkins

• It exposes an API for testers with advanced testing 
capabilities
1. Seamless browser handling
2. Functional assessment
3. Quality of Experience 

Analysis of video quality and end-to-end latency in WebRTC



2. Testing Framework for WebRTC
 Seamless browser handling
• KTF introduces the concept of test scenario, which 

can be seen as the collection of browsers in which a 
given test case is going to be exercised

• Each browser have a given scope:
– Local machine
– Remote machine
– Remote PaaS (Saucelabs)
– Docker

Analysis of video quality and end-to-end latency in WebRTC



2. Testing Framework for WebRTC
 Seamless browser handling

Analysis of video quality and end-to-end latency in WebRTC

{
"executions" : [

{
"peer1" : {

"scope" : "local",
"browser" : "chrome"

},
"peer2" : {

"scope" : "docker",
"browser" : "firefox"

}
},
{

"peer1" : {
"scope" : "saucelabs",
"browser" : "edge",
"version" : "13",
"platform" : "win10"

},
"peer2" : {

"scope" : "remote",
"browser" : "safari"

}
}

]
}

• KTF defines a custom JSON
notation to define the different 
parameters for test scenarios

This is a small step for 
testers but one giant leap 
for DevOps



2. Testing Framework for WebRTC
 Functional assessment
• Automated interactions with browsers
• Subscription to media events (such as playing)
• Color detection for media in HTML5 video tags

Analysis of video quality and end-to-end latency in WebRTC

That, detective, is 
the right question

With this capabilities we are able 
to detect whether or not media is 
reaching browsers, but:
Is that media as expected?



2. Testing Framework for WebRTC
 Quality of Experience
• End-to-end latency meter
• Using the fake user media provided out of the box 

by Google Chrome

Analysis of video quality and end-to-end latency in WebRTC

OCR OCR
E2E-latency = treceiver - tsender



2. Testing Framework for WebRTC
 Quality of Experience
• Problem: how to make sampling?
• Solution: synchronize presenter and viewer by 

means of NTP (Network Time Protocol)
• Implementation: 

– JavaScript logic is injected in each browser
– This logic gathers the clock from media using HTML5 

Canvas
– After that the set of images is processed using Tesseract 

OCR

Analysis of video quality and end-to-end latency in WebRTC



2. Testing Framework for WebRTC
 Quality of Experience
• Moreover, KTF is integrated with existing QoE

algorithms
– PESQ (Perceptual Evaluation of Speech Quality) for audio
– SSIM (Structural similarity) for video
– PSNR (Peak Signal-to-Noise Ratio) also for video

• Finally, KTF gathers WebRTC statistics and compile 
that data as CSV files

Analysis of video quality and end-to-end latency in WebRTC



3. Case Study: WebRTC broadcasting
• Test scenario (1 to N video communication)

– 1 local browser acting as presenter
– 200 remote browser acting as viewers
– A new viewer is connected to the broadcasting each 

second
– Total test time: 200 seconds

• System features
– The machine hosting the service is a medium cloud 

instance (2 VCPU, 4 GB RAM)

Analysis of video quality and end-to-end latency in WebRTC



3. Case Study: WebRTC broadcasting
• Results

Analysis of video quality and end-to-end latency in WebRTC

The experiment shows that 
the system supports up to 
around 190 concurrent users



4. Conclusions
• Testing WebRTC based application, consistently 

automated fashion is a cumbersome challenging 
problem

• We have created a framework to assess WebRTC 
applications
– Seamless browser handling (JSON test scenario)
– Quality of Experience (end-to-end latency, integration with 

existing algorithms)
• Next step: improve scalability by using fake 

browsers

Analysis of video quality and end-to-end latency in WebRTC



Thank you
QA?

Boni García
Departamento de Sistemas Telemáticos y Computación (GSyC)

Universidad Rey Juan Carlos

boni.garcia@urjc.es


	Número de diapositiva 1
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	Número de diapositiva 5
	Número de diapositiva 6
	Número de diapositiva 7
	Número de diapositiva 8
	Número de diapositiva 9
	Número de diapositiva 10
	Número de diapositiva 11
	Número de diapositiva 12
	Número de diapositiva 13
	Número de diapositiva 14
	Número de diapositiva 15
	Número de diapositiva 16

