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1. Introduction
• Web Real-Time Communications (WebRTC) is the 

umbrella term for several emergent technologies and 
APIs that aim to bring such communications to the 
Web

• The standardization activity for WebRTC is split 
between the World Wide Web Consortium (W3C) and 
the Internet Engineering Task Force (IETF): 
– W3C is defining the JavaScript APIs (Application 

Programming Interfaces) and the standard HTML5 tags to 
enable real-time media capabilities to browsers. 

– IETF is defining the underlying communication protocols 
(SRTP, SDP, ICE, and so on) for the setup and management 
of a reliable communication channel between browsers
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1. Introduction
• Although still in its infancy, WebRTC is a 

technological initiative getting considerable 
worldwide attention

• WebRTC-based applications can be evaluated 
with respect to their multimedia conversation 
quality

• This work presents a testing framework aimed 
to simplify the testing process of WebRTC 
applications
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1. Introduction
• This work has been done by Universidad Rey 

Juan Carlos in the context of the projects
– FIWARE FP7-2011-ICT-FI, GA-285248
– NUBOMEDIA FP7-ICT-2013-1.6, GA-610576
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2. WebRTC server infrastructure
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Peer-to-Peer WebRTC Application (without media infrastructure)

WebRTC video stream

WebRTC Application with media server
Media Server



2. WebRTC server infrastructure
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Transcoding media server

VP8 H.264

MCU media server

Recording media server



2. WebRTC server infrastructure
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2. WebRTC server infrastructure

15/10/2015 Testing Infrastructure for WebRTC 
applications 9

Complexity



2. WebRTC server infrastructure
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2. WebRTC server infrastructure
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Key concepts: media elements and pipelines
 Media Element

• Provides a specific media functionality
• Ready to be used
• New media elements can be added

 Media pipeline
• Chain of media elements implementing the 

desired media logic
• The Media Server provides the capability of 

creating media pipelines by joining media 
elements of the toolbox
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2. WebRTC server infrastructure
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3. WebRTC testing framework
• Kurento also provides a high level testing 

framework (KTF, Kurento Testing Framework) 
aimed to simplify the assessment of WebRTC-
based applications

• KTF is not only for Kurento applications and 
can be used in general for WebRTC
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3. WebRTC testing framework
• KTF is built on the top of two open source testing 

frameworks:
– Selenium (automation of web testing)
– JUnit (unit testing for Java)

• KTF supports three kind of browsers (scope):
– Local browsers. The host running tests should have 

installed web browsers in the operating system
– Remote browsers. The execution of a test can be 

configured to run in a remote browser. These tests 
are implemented using Selenium Grid

– Remote browsers from Saucelabs, which is a PaaS
(Platform as a Service) cloud solution to support 
remote testing based on Selenium
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3. WebRTC testing framework
• The configuration of 

browsers is called 
test scenario

• This scenario can be 
specified by means 
of a custom JSON 
notation
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{
"executions" : [

{
"peer1" : {

"scope" : "local",
"browser" : "chrome"

},
"peer2" : {

"scope" : "local",
"browser" : "firefox"

}
},
{

"peer1" : {
"scope" : "saucelabs",
"browser" : "explorer",
"version" : "11",
"platform" : "win8_1"

},
"peer2" : {

"scope" : "saucelabs",
"browser" : "safari",
"version" : "36",
"platform" : "yosemite"

}
}

]
}



3. WebRTC testing framework
• KTF provides specific capabilities to perform:

– Functional test. Assessment for WebRTC media 
capabilities.

– Performance tests. Evaluation of system behavior 
whilst web application is exercised with many 
concurrent requests.

– Quality-of-experience tests. These kinds of tests 
assess the quality of the media received in the 
browsers using QoE methods as depicted on 
section
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3. WebRTC testing framework
• Functional test capabilities:

– Management of video tag events (subscription 
and assessment)

– Analysis of media in video tag based in color 
detection and comparison (RGB)
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3. WebRTC testing framework
• Performance test capabilities:

– Ramp of browsers
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3. WebRTC testing framework
• Performance test capabilities:

– Monitoring of the system under test
• Time (relative to the start of the test)
• Number of incoming clients
• CPU usage (percentage)
• Memory usage (number of bytes and percentage out of 

the total)
• Swap memory usage (number of bytes and percentage 

out of the total)
• Network interfaces usage (number of sent and received 

bytes in each of the network interfaces)
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3. WebRTC testing framework
• Performance test capabilities:

– Latency analysis based on color comparison

• Quality test capabilities:
– PESQ (Perceptual Evaluation of Speech Quality) is 

supported to evaluate the received audio quality
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4. KTC code examples
• KTC can be used as a Maven dependency
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<dependency>
<groupId>org.kurento</groupId>
<artifactId>kurento-test</artifactId>
<version>6.0.0</version>
<scope>test</scope>

</dependency>



4. KTC code examples
• The structure of a KTC JUnit test case is:

15/10/2015 Testing Infrastructure for WebRTC 
applications 22

public class MyTest extends KurentoTest {

public MyTest(TestScenario testScenario) {
super(testScenario);

}

@Parameters(name = "{index}: {0}")
public static Collection<Object[]> data() {

return TestScenario.json("browsers.json");
}

@Test
public void test() {

// Test logic
}

}



4. KTC code examples
• Snippets for functional assessment:
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// Media events
getBrowser("peer1").getVideoTag("video").

subscribeEvents("playing");
boolean playing = getBrowser("peer1").

getVideoTag("video").waitForEvent("playing");
Assert.assertTrue(playing);

// Color 
Color realColor = getBrowser("peer1").getVideoTag("video").

getColorAt(0,0);
Assert.assertTrue(similarColor(realColor, 

expectedColor));



4. KTC code examples
• Snippets for performance assessment:
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private SystemMonitorManager monitor;

@Before
public void setup() {

String host = "127.0.0.1";
String login = "user";
String key = "/path/to/key.pem";
monitor = new SystemMonitorManager(host, login, key);
monitor.start();

}

@After
public void teardown() {

monitor.stop();
monitor.writeResults("results.csv");
monitor.destroy();

}

@Test
public void test() {

Map<String, BrowserClient> browsers = getTestScenario().getBrowserMap("viewer");
// Test logic for presenter
ParallelBrowsers.ramp(browsers, monitor, new BrowserRunner() {

public void run(BrowserClient browser) throws Exception {
// Test logic for viewers

}
});

}



4. KTC code examples
• Performance results:
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4. KTC code examples
• Snippets for quality assessment:
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int sampleRate = 16000; // samples per second
float minPesqMos = 3; // PESQ MOS [1..5]
String audioUrl = 
"http://files.kurento.org/audio/10sec/fiware_mono_16khz.wav";

float realPesqMos = Recorder.getPesqMos(audioUrl, sampleRate);
Assert.assertTrue(realPesqMos >= minPesqMos);



5. Conclusions and future work
• Testing of WebRTC applications presents 

important challenges for practitioners 
• This research presents a high-level testing 

framework to perform complete assessment 
of WebRTC-based applications: Kurento 
Testing Framework (KTF)

• Future work
– Video QoE assessment (e.g. PEVQ, VQM, or SSIM)
– Use of Docker as new scope for browsers
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