
Testing Infrastructure for 
WebRTC applications

Boni García
boni.garcia@urjc.es

mailto:boni.garcia@urjc.es


Contents
1. Introduction
2. WebRTC server infrastructure
3. WebRTC testing framework
4. KTC code examples
5. Conclusions and future work

15/10/2015 Testing Infrastructure for WebRTC 
applications 2



1. Introduction
• Web Real-Time Communications (WebRTC) is the 

umbrella term for several emergent technologies and 
APIs that aim to bring such communications to the 
Web

• The standardization activity for WebRTC is split 
between the World Wide Web Consortium (W3C) and 
the Internet Engineering Task Force (IETF): 
– W3C is defining the JavaScript APIs (Application 

Programming Interfaces) and the standard HTML5 tags to 
enable real-time media capabilities to browsers. 

– IETF is defining the underlying communication protocols 
(SRTP, SDP, ICE, and so on) for the setup and management 
of a reliable communication channel between browsers

15/10/2015 Testing Infrastructure for WebRTC 
applications 3



1. Introduction
• Although still in its infancy, WebRTC is a 

technological initiative getting considerable 
worldwide attention

• WebRTC-based applications can be evaluated 
with respect to their multimedia conversation 
quality

• This work presents a testing framework aimed 
to simplify the testing process of WebRTC 
applications

15/10/2015 Testing Infrastructure for WebRTC 
applications 4



1. Introduction
• This work has been done by Universidad Rey 

Juan Carlos in the context of the projects
– FIWARE FP7-2011-ICT-FI, GA-285248
– NUBOMEDIA FP7-ICT-2013-1.6, GA-610576

15/10/2015 Testing Infrastructure for WebRTC 
applications 5



2. WebRTC server infrastructure

15/10/2015 Testing Infrastructure for WebRTC 
applications 6

Peer-to-Peer WebRTC Application (without media infrastructure)

WebRTC video stream

WebRTC Application with media server
Media Server



2. WebRTC server infrastructure

15/10/2015 Testing Infrastructure for WebRTC 
applications 77

Transcoding media server

VP8 H.264

MCU media server

Recording media server



2. WebRTC server infrastructure

15/10/2015 Testing Infrastructure for WebRTC 
applications 8

Media is
here

Media got
there

Transcoding
MCU

Recording

Media is
here

Rich Media
got there

Media 
Events

Transcoding, MCU, 
Recording +

Enrich, Augment, 
Analyze, Combine, 

Transform, Adapt, …



2. WebRTC server infrastructure

15/10/2015 Testing Infrastructure for WebRTC 
applications 9

Complexity



2. WebRTC server infrastructure

15/10/2015 Testing Infrastructure for WebRTC 
applications 10

Future 
Internet 

Multimedia 
Infrastructure

Simple 
Development 

APIs

Kurento: the equation



2. WebRTC server infrastructure

15/10/2015 Testing Infrastructure for WebRTC 
applications 11

Key concepts: media elements and pipelines
 Media Element

• Provides a specific media functionality
• Ready to be used
• New media elements can be added

 Media pipeline
• Chain of media elements implementing the 

desired media logic
• The Media Server provides the capability of 

creating media pipelines by joining media 
elements of the toolbox

Media Element

Si
nk

SR
C

Media Pipeline



2. WebRTC server infrastructure

15/10/2015 Testing Infrastructure for WebRTC 
applications 12



3. WebRTC testing framework
• Kurento also provides a high level testing 

framework (KTF, Kurento Testing Framework) 
aimed to simplify the assessment of WebRTC-
based applications

• KTF is not only for Kurento applications and 
can be used in general for WebRTC

15/10/2015 Testing Infrastructure for WebRTC 
applications 13



3. WebRTC testing framework
• KTF is built on the top of two open source testing 

frameworks:
– Selenium (automation of web testing)
– JUnit (unit testing for Java)

• KTF supports three kind of browsers (scope):
– Local browsers. The host running tests should have 

installed web browsers in the operating system
– Remote browsers. The execution of a test can be 

configured to run in a remote browser. These tests 
are implemented using Selenium Grid

– Remote browsers from Saucelabs, which is a PaaS
(Platform as a Service) cloud solution to support 
remote testing based on Selenium

15/10/2015 Testing Infrastructure for WebRTC 
applications 14



3. WebRTC testing framework
• The configuration of 

browsers is called 
test scenario

• This scenario can be 
specified by means 
of a custom JSON 
notation

15/10/2015 Testing Infrastructure for WebRTC 
applications 15

{
"executions" : [

{
"peer1" : {

"scope" : "local",
"browser" : "chrome"

},
"peer2" : {

"scope" : "local",
"browser" : "firefox"

}
},
{

"peer1" : {
"scope" : "saucelabs",
"browser" : "explorer",
"version" : "11",
"platform" : "win8_1"

},
"peer2" : {

"scope" : "saucelabs",
"browser" : "safari",
"version" : "36",
"platform" : "yosemite"

}
}

]
}



3. WebRTC testing framework
• KTF provides specific capabilities to perform:

– Functional test. Assessment for WebRTC media 
capabilities.

– Performance tests. Evaluation of system behavior 
whilst web application is exercised with many 
concurrent requests.

– Quality-of-experience tests. These kinds of tests 
assess the quality of the media received in the 
browsers using QoE methods as depicted on 
section

15/10/2015 Testing Infrastructure for WebRTC 
applications 16



3. WebRTC testing framework
• Functional test capabilities:

– Management of video tag events (subscription 
and assessment)

– Analysis of media in video tag based in color 
detection and comparison (RGB)

15/10/2015 Testing Infrastructure for WebRTC 
applications 17



3. WebRTC testing framework
• Performance test capabilities:

– Ramp of browsers

15/10/2015 Testing Infrastructure for WebRTC 
applications 18



3. WebRTC testing framework
• Performance test capabilities:

– Monitoring of the system under test
• Time (relative to the start of the test)
• Number of incoming clients
• CPU usage (percentage)
• Memory usage (number of bytes and percentage out of 

the total)
• Swap memory usage (number of bytes and percentage 

out of the total)
• Network interfaces usage (number of sent and received 

bytes in each of the network interfaces)

15/10/2015 Testing Infrastructure for WebRTC 
applications 19



3. WebRTC testing framework
• Performance test capabilities:

– Latency analysis based on color comparison

• Quality test capabilities:
– PESQ (Perceptual Evaluation of Speech Quality) is 

supported to evaluate the received audio quality

15/10/2015 Testing Infrastructure for WebRTC 
applications 20



4. KTC code examples
• KTC can be used as a Maven dependency

15/10/2015 Testing Infrastructure for WebRTC 
applications 21

<dependency>
<groupId>org.kurento</groupId>
<artifactId>kurento-test</artifactId>
<version>6.0.0</version>
<scope>test</scope>

</dependency>



4. KTC code examples
• The structure of a KTC JUnit test case is:

15/10/2015 Testing Infrastructure for WebRTC 
applications 22

public class MyTest extends KurentoTest {

public MyTest(TestScenario testScenario) {
super(testScenario);

}

@Parameters(name = "{index}: {0}")
public static Collection<Object[]> data() {

return TestScenario.json("browsers.json");
}

@Test
public void test() {

// Test logic
}

}



4. KTC code examples
• Snippets for functional assessment:

15/10/2015 Testing Infrastructure for WebRTC 
applications 23

// Media events
getBrowser("peer1").getVideoTag("video").

subscribeEvents("playing");
boolean playing = getBrowser("peer1").

getVideoTag("video").waitForEvent("playing");
Assert.assertTrue(playing);

// Color 
Color realColor = getBrowser("peer1").getVideoTag("video").

getColorAt(0,0);
Assert.assertTrue(similarColor(realColor, 

expectedColor));



4. KTC code examples
• Snippets for performance assessment:

15/10/2015 Testing Infrastructure for WebRTC 
applications 24

private SystemMonitorManager monitor;

@Before
public void setup() {

String host = "127.0.0.1";
String login = "user";
String key = "/path/to/key.pem";
monitor = new SystemMonitorManager(host, login, key);
monitor.start();

}

@After
public void teardown() {

monitor.stop();
monitor.writeResults("results.csv");
monitor.destroy();

}

@Test
public void test() {

Map<String, BrowserClient> browsers = getTestScenario().getBrowserMap("viewer");
// Test logic for presenter
ParallelBrowsers.ramp(browsers, monitor, new BrowserRunner() {

public void run(BrowserClient browser) throws Exception {
// Test logic for viewers

}
});

}



4. KTC code examples
• Performance results:

15/10/2015 Testing Infrastructure for WebRTC 
applications 25



4. KTC code examples
• Snippets for quality assessment:

15/10/2015 Testing Infrastructure for WebRTC 
applications 26

int sampleRate = 16000; // samples per second
float minPesqMos = 3; // PESQ MOS [1..5]
String audioUrl = 
"http://files.kurento.org/audio/10sec/fiware_mono_16khz.wav";

float realPesqMos = Recorder.getPesqMos(audioUrl, sampleRate);
Assert.assertTrue(realPesqMos >= minPesqMos);



5. Conclusions and future work
• Testing of WebRTC applications presents 

important challenges for practitioners 
• This research presents a high-level testing 

framework to perform complete assessment 
of WebRTC-based applications: Kurento 
Testing Framework (KTF)

• Future work
– Video QoE assessment (e.g. PEVQ, VQM, or SSIM)
– Use of Docker as new scope for browsers

15/10/2015 Testing Infrastructure for WebRTC 
applications 27


	Testing Infrastructure for WebRTC applications
	Contents
	1. Introduction
	1. Introduction
	1. Introduction
	2. WebRTC server infrastructure
	2. WebRTC server infrastructure
	2. WebRTC server infrastructure
	2. WebRTC server infrastructure
	2. WebRTC server infrastructure
	2. WebRTC server infrastructure
	2. WebRTC server infrastructure
	3. WebRTC testing framework
	3. WebRTC testing framework
	3. WebRTC testing framework
	3. WebRTC testing framework
	3. WebRTC testing framework
	3. WebRTC testing framework
	3. WebRTC testing framework
	3. WebRTC testing framework
	4. KTC code examples
	4. KTC code examples
	4. KTC code examples
	4. KTC code examples
	4. KTC code examples
	4. KTC code examples
	5. Conclusions and future work

