Systems Architecture

9. Concurrency in C

Boni Garcia

boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2025/2026

vcadm | Universidad Carlos lll de Madrid
QOO

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Systems Architecture - 9. Concurrencyin C

Table of contents

Introduction
Concurrency basics
Processes vs threads
POSIX threads

Race conditions
Mutexes

Deadlocks

Helgrind

L 0 N O U A Wb

Takeaways

Systems Architecture - 9. Concurrencyin C

1. Introduction

* In software, concurrency means multiple computations are
happening at the same time

* Concurrency is essential in modern programming to improve
performance, for instance:
— Web servers must handle multiple simultaneous users
- Mobile apps need to do some of their processing on servers

— Graphical User Interfaces (GUIs) require background work that does not
interrupt the user

* In this unit, we learn the basics of concurrent programming in C:

- How to manage threads
- How to synchronize threads

Systems Architecture - 9. Concurrencyin C

Table of contents

2. Concurrency basics

Systems Architecture - 9. Concurrencyin C

2. Concurrency basics

* Generally speaking, concurrency is about two or more separate
activities happening at the same time

A, B, C are executed

TaskA ——— TaskB ——— TaskC sequentially (i.e., one
after the other)

Task B B and C are
TaskA —— happens at the
Task C same time

time

Systems Architecture - 9. Concurrencyin C

2. Concurrency basics

 Computer systems generally consist of the following parts:
— The Central Processing Unit (CPU): executes instructions of computer programs
- Primary memory: holds the programs and data to be processed
- 1/0 (input/output) devices: peripherals that communicate with the outside

world
— Bus: communication system that transfers data between components
Each core is a
core #1 : .
CPU CPU —= single processing
core #N units (CPU)
bus bus
Memory /O Memory /O

single-core system multi-core system

Systems Architecture - 9. Concurrencyin C

2. Concurrency basics

* In computer systems, we can distinguish between:

— Concurrency: multiple tasks are performed in overlapping time periods with
shared resources (e.g., time slicing on a single-core machine)

CPU % Logical concurrency

— Parallelism: multiple tasks are tasks literally run at the same time (e.g., on a
multicore processor)

CPU#1 TaskA
CPU #2 Task B % Physical concurrency

CPU #3 Task C

Systems Architecture - 9. Concurrencyin C

2. Concurrency basics

* There are two main models for concurrent programming:

1. Shared memory: concurrent modules interact by reading and
writing shared data in the same memory segment. For instance:

— Two processes running in the same computer, reading and writing in the same
filesystem

— Two threads in the same process sharing the same variables

2. Message passing. In the message-passing model, concurrent
modules interact by sending messages to each other through a
communication channel. For instance:

— Two processes running in different computers connected by the network
— Two processes running in the same computer connected by a pipe

Systems Architecture - 9. Concurrencyin C

Table of contents

3. Processes vs threads
- Processes
- Threads
- Comparison
- Multitasking

Systems Architecture - 9. Concurrencyin C

3. Processes vs threads - Processes

e A process is an executing program in a given operating system (e.g.,
Linux, Windows, macOS, etc.)

— We use a separate system call (called fork in Unix-like systems) to create a
process

— Each process is independent and treated as an isolated entity in the operating
system

— Each process exists within its own address or memory space

— Processes use some mechanisms called IPC (Inter-Process Communication) to
communicate with each other, such as:

* Files, sockets, message queue, pipes, or signals, among other mechanisms

Systems Architecture - 9. Concurrencyin C

3. Processes vs threads - Threads

* A thread is an execution unit that is part of a process
— A process can have more than one thread
- A thread is lightweight and can be managed independently

— The thread takes less time to terminate as compared to the process but unlike
the process, threads do not isolate

code || data || stack || heap code || data || stack || heap

: SREE

Single-threaded process Multi-threaded process

Systems Architecture - 9. Concurrency in C

3. Processes vs threads - Comparison

* The key differences between processes and threads are:

Definition Execution of a program Segment of a process

Execution time Processes takes more time for creation and Threads takes less time for creation and
termination termination

Memory Process are totally isolated (don’t share Threads share memory
memory)

Communication Processes must use inter-process Threads can directly communicate with
communication (files, signals, pipes, etc.) to other threads of its process using shared
communicate with other processes memory

Controlled by Process is controlled by the operating Threads are controlled by programmer in

system a program

Systems Architecture - 9. Concurrencyin C

3. Processes vs threads - Multitasking

e Concurrency at the operating system level is called multitasking (i.e., the
concurrent execution of multiple processes over time)

— To implement multitasking, the operating systems use a process scheduler to decide
which process uses the CPU and for how long

* The most common process scheduler in Linux is called Completely Fair
Scheduler (CFS)

— CFS implements an algorithm to handle the scheduling of runnable entities (called
tasks) which are either threads or (single-threaded) processes

— CFS uses a technique called context switching to save and restore the state of the tasks
being executed

[I\/Iemory]

save irestore

CPU T1+ T2 iaT1 T2

time

https://docs.kernel.org/scheduler/sched-design-CFS.html

Systems Architecture - 9. Concurrencyin C

Table of contents

4. POSIX threads

Systems Architecture - 9. Concurrencyin C

4. POSIX threads

* POSIX threads (pthreads) is a parallel execution model based on
standards

— POSIX (Portable Operating System Interface) is a family of IEEE standards to
ensure compatibility between operating systems

* Pthreads are implemented in the C language in the pthread.h
library

- Once created, each thread progresses independently. This causes each of the
threads can potentially travel at a different speed, running concurrently

* Programs that use pthreads need to be compiled with the option
-pthread (to add support for multithreading)

gcc program.c -pthread

Systems Architecture - 9. Concurrencyin C

4. POSIX threads

* The pthread_create() function starts a new thread in the calling
process. Its prototype is as follows:

int pthread _create(pthread_t *thread, const pthread attr_t *attr,
void *(*start_routine)(void *), void *arg);

- Number of arguments: 4
e Istargument (thread): Pointer to the thread id (unique identifier)

« 2nd argument (attr): Pointer to the configuration attributes for the new thread. If it is
NULL, the thread is created with default attributes

« 3dargument (start_routine): Function executed as a new thread
* 4% argument (arg): Pointer to the arguments of the function passed as the 3@ argument

— Return value:

* Onsuccess: 0
* On error: error number (different than 0)

Systems Architecture - 9. Concurrencyin C

4. POSIX threads

* The pthread_join() function is used in order to wait for a thread
to complete its execution. Its prototype is as follows:

int pthread_join(pthread_t thread, void **thread_return);

- Number of arguments: 2
* Istargument (thread): Thread id that the current thread is waiting for

» 2" argument (thread_return): pointer that points to the location that stores the
return status of the thread id that is referred to in the 1t argument

— Return value:
* Onsuccess: 0
* On error: error number (different than 0)

Systems Architecture - 9. Concurrencyin C

4. POSIX threads

* The pthread_exit() function is used to terminate a thread

void pthread_exit(void *retval);

- Number of arguments: 1

e Istargument (retval): Pointer to the return value (integer). This value has the return
status of the thread

* The pthread_self () function obtain the id of the calling thread
pthread t pthread _self(void);

— Return value: calling thread’s id

Systems Architecture - 9. Concurrencyin C

4. POSIX threads

* The usual procedure to use POSIX threads in a C program is as
follows:
1. Declare a variable to identify the thread (type pthread_t)

2. Define the thread function (void* my_thread(void *data) {..})
* Optionally, this function can control some input arguments
* Also optionally, it can return some value

3. Create thread (invoking function pthread_create(...))
* We can implement error handling here

4. Synchronize threads. We typically wait for thread to finish (invoking function
pthread_join(..))
e Returned values are handled with this function

Systems Architecture - 9. Concurrencyin C

4. POSIX threads

#tinclude <stdio.h>

#tinclude <stdlib.h>
#include <pthread.h>
#include <unistd.h>

value

void* thread_run(void *data) {

The Sleep function pthread_t pt_id = pthread_self();
printf("[PTHR: %1d]: New thread started\n", pt_id);
pauses the
. sleep(3);
execution a number
printf("[PTHR: %1d]: Finishing new thread\n", pt_id);
of seconds pthread_exit(NULL);

}

int main() {
pthread_t thread_id;
pthread_t main_id = pthread_self();

| printf("[MAIN: %1d]: Starting new thread from main\n", main_id);

i int thread_rc = pthread_create(&thread_id, NULL, thread_run, NULL);
! if (thread_rc != 0) {

| printf("Error creating thread %i\n", thread_rc);

i exit(1);

}

pthread_join(thread_id, NULL);
printf("[MAIN: %1d]: Main thread finished\n", main_id);

: 140343014979392]: Starting new thread from main
: 140343014975232]: New thread started

: 140343014975232]: Finishing new thread

return 0; : 140343014979392]: Thread finished

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-1.c

Systems Architecture - 9. Concurrency in C

4. POSIX threads

 Example 1b: if we don’t wait the thread to be finished, the process
finished first

#include <stdio.h>

#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

void* thread_run(void *data) {
pthread_t pt_id = pthread_self();
printf("[PTHR: %1d]: New thread started\n", pt_id);

sleep(3);

printf("[PTHR: %1d]: Finishing new thread\n", pt_id);
pthread_exit(NULL);
}

int main() {
pthread_t thread_id;
pthread_t main_id = pthread_self();

printf("[MAIN: %1d]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, NULL);
if (thread_rc != 0) {
printf("Error creating thread %i\n", thread_rc);
exit(1);

} [MAIN: 139839626053440]: Starting new thread from main

// We don't wait the new thread to finish
printf("[MAIN: %1d]: Main thread finished\n", main_id);

[MAIN: 139839626053440]: Thread finished

return 0;

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-1-v2.c

Systems Architecture - 9. Concurrency in C

4. POSIX threads

#include <stdio.h>

#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

void* thread_run(void *data) {
pthread_t pt_id = pthread_self();
printf("[PTHR: %1d]: New thread started\n", pt_id);

sleep(3);
printf("[PTHR: %1d]: Finishing new thread\n", pt_id);

pthread_exit(NULL);
}

pthread_t thread_id;
pthread_t main_id = pthread_self();

printf("[MAIN: %1d]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, NULL);
if (thread_rc != 0) {
printf("Error creating thread %i\n", thread_rc);
exit(1); : 139773901428544]: Starting new thread from main
} : 139773901428544]: Main thread finished

139773901424384]: New thread started

printf("[MAIN: %1d]: Main thread finished\n", main_id);

// Let the process stay alive until all threads finish : 139773901424384]: Finishing new thread

i int main() {
i pthread_exit(NULL);

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-1-v3.c

Systems Architecture - 9. Concurrencyin C

4 POS I X th #include <stdio.h> \\/bo \\ i
° rea S #include <stdlib.h>) 0,
#include <pthread.h> ‘\‘Q?‘\\.

#include <unistd.h> \‘:96 \\
* Example 2: creating a thread void* thread_run(void *data) {

pthread t pt_id = pthread _self();
printf("[PTHR: %1d]: New thread started\n", pt_id);

passing data (an integer value)
and without return value

int *th_data = (int*) data;
printf("[PTHR: %1d]: Data received: %d\n", pt_id, *th_data);

sleep(3);

printf("[PTHR: %1d]: Finishing new thread\n", pt_id);
pthread exit(NULL);
}

int main() {
pthread_t thread_id;
pthread t main_id = pthread _self();
int data = 10;

printf("[MAIN: %1d]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, &data);
if (thread_rc != 0) {

printf("Error creating thread %i\n", thread_rc);

exit(1);
139984335865664]: Starting new thread from main
139984335861504]: New thread started
139984335861504]: Data received: 10

}

pthread_join(thread_id, NULL);
printf("[MAIN: %1d]: Thread finished\n", main_id);

139984335861504]: Finishing new thread
139984335865664]: Thread finished

return 0O;

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-2.c

Systems Architecture - 9. Concurrency in C

#include <stdio.h> A & !
#include <stdlib.h> U !
#include <pthread.h> \\‘f@ "N |
4 P IX t rea S #include <unistd.h> \\00 R
[] S B
typedef struct thread_data { \\c‘;'& \\\
int a; \\\45 R
o M int b; .
* Example 3: creating a thread | theoed data

void* thread_run(void *data) {
pthread_t pt_id = pthread_self();
printf("[PTHR: %1d]: New thread started\n", pt_id);

passing data (a struct) and
without return value

thread_data *th_data = (thread_data*) data;
printf("[PTHR: %1d]: Data received: %d %d\n", pt_id, th_data->a,
th_data->b);

sleep(3);
pthread_exit(NULL);

int main() {
pthread_t thread_id;
pthread_t main_id = pthread_self();
thread_data data = { .a = 10, .b = 20 };

printf("[MAIN: %1d]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, &data);
if (thread_rc != 0) {

printf("Error creating thread %i\n", thread_rc);
140021651552064]: Starting new thread from main exit(1);
140021651547904]: New thread started

140021651547904]: Data received: 10 20

}

pthread_join(thread_id, NULL);
printf("[MAIN: %1d]: Thread finished\n", main_id);

140021651547904]: Finishing new thread
140021651552064]: Thread finished

E printf("[PTHR: %1d]: Finishing new thread\n", pt_id);
' return 0;

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-3.c

Systems Architecture - 9. Concurrency in C

4 POS I X th #include <stdio.h> \\Qa . i
o rea S #include <stdlib.h> L. O, T
#include <pthread.h> \\‘Q% X

#include <unistd.h> \‘:96 \\
* Example 4: creating a thread void* thread_run(void *data) {

pthread t pt_id = pthread self();
printf("[PTHR: %1d]: New thread started\n", pt_id);

passing data (an integer
value) and with a return
value (another integer value)

sleep(3);
printf("[PTHR: %1d]: Finishing new thread\n", pt_id);

int ret = 42;
pthread_exit(&ret);
}

pthread_t thread_id;
pthread t main_id = pthread self();

printf("[MAIN: %1d]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, NULL);
if (thread_rc != 0) {

printf("Error creating thread %i\n", thread rc);

exit(1);

: 140594746173248]: Starting new thread from main

: 140594746169088]: New thread started

: 140594746169088]: Finishing new thread

: 140594746173248]: Thread finished, returning 32764

}

int *output;

pthread_join(thread_id, (void**) &output);

printf("[MAIN: %1d]: Thread finished, returning %d\n", main_id, *output);

return 0;

i int main() {

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-4.c

Systems Architecture - 9. Concurrency in C

4. POSIX threads

* Example 5: creating a thread
passing data (an integer
value) and with a return
value (another integer value)

: 139752538543936]: Starting new thread from main
: 139752538539776]: New thread started

: 139752538539776]: Finishing new thread
: 139752538543936]: Thread finished, returning 42

. . W A ~ 1
#include <stdio.h> \\0,‘? R :
#include <stdlib.h> \\Q@ R\ !
#include <pthread.h> ‘\‘0 ‘\\ i
#include <unistd.h> % C%s’\\
void* thread_run(void *data) { \\6

pthread_t pt_id = pthread_self(); A\

printf("[PTHR: %1d]: New thread started\n", pt_id);
sleep(3);
printf("[PTHR: %1d]: Finishing new thread\n", pt_id);

int *ret = malloc(sizeof(int));
*ret = 42;
pthread_exit(ret);

int main() {
pthread_t thread_id;
pthread_t main_id = pthread_self();

printf("[MAIN: %1d]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, NULL);
if (thread_rc != 9) {

printf("Error creating thread %i\n", thread_rc);

exit(1);
}

int *output;

pthread_join(thread_id, (void**) &output);

printf("[MAIN: %1d]: Thread finished, returning %d\n", main_id, *output);
free(output);

return 0;

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-5.c

Systems Architecture - 9. Concurrency in C

#tinclude <stdio.h> s A

#include <stdlib.h> \ol:f k.
#include <pthread.h> A @0 k. i
° rea S #include <unistd.h> A O \\ :
‘\\ c. RS |
typedef struct thread_data { ‘\\4‘& \\\
int a; A G e
1 int b; N
* Example 6: creating a thread

} thread_data;

passing data (a struct) and with
a return value (an integer value)

void* thread_run(void *data) {
pthread_t pt_id = pthread_self();
printf("[PTHR: %1d]: New thread started\n", pt_id);

thread_data *th_data = (thread_data*) data;
printf("[PTHR: %1d]: Data received: %d %d\n", pt_id, th_data->a,
th_data->b);

sleep(3);
printf("[PTHR: %1d]: Finishing new thread\n", pt_id);

th_data->result = 42;
pthread_exit(NULL);

int main() {
pthread_t thread_id;
pthread_t main_id = pthread_self();
thread_data data = { .a = 10, .b = 20 };

printf("[MAIN: %1d]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, &data);
if (thread_rc != 0) {

printf("Error creating thread %i\n", thread_rc);

exit(1);

140524621989696]: Starting new thread from main
140524621985536]: New thread started

140524621985536]: Data received: 10 20 }

140524621985536]: Finishing new thread
140524621989696]: Thread finished, returning 42

pthread_join(thread_id, NULL);
printf("[MAIN: %1d]: Thread finished, returning %d\n", main_id, data.result);

return 0;

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-6.c

Systems Architecture - 9. Concurrencyin C

4. POSIX threads

* Multitasking improves the operating systems performance, but it also
adds complexity

— Because threads can run simultaneously, there’s no inherent guarantee about
the order in which parts of your code on different threads will run

* This can lead to problems, such as:

— Race conditions, in which threads are accessing data or resources in an
inconsistent order

- Deadlocks, in which two threads are waiting for each other, preventing both
threads from continuing

- Bugs that only happen in certain situations and are hard to reproduce and fix
reliably

Systems Architecture - 9. Concurrencyin C

Table of contents

5. Race conditions

Systems Architecture - 9. Concurrency in C

5. Race conditions

e Concurrent programs can suffer
from synchronization problems
that make the program to exhibit
an unexpected behavior

* For example, consider the
following program:

What is the value of the

variable counter in this
e line?

' #include <stdio.h>
' #include <pthread.h>

| #define MAX 1000
' int counter = 0;
i void* count(void *arg) {
for (int i = @; i < MAX; i++) {

counter++;

}
: pthread_exit(NULL);
)}

i int main() {
pthread_t tidl, tid2;

pthread_create(&tidl, NULL, count, NULL);
pthread_create(&tid2, NULL, count, NULL);

pthread_join(tidl, NULL);
pthread_join(tid2, NULL);

printf("counter: %d\n", counter);

return 0;

https://github.com/bonigarcia/c-programming/blob/master/mutex/race_condition_1.c

Systems Architecture - 9. Concurrency in C

5. Race conditions

* Now, consider the following
alternative (it only changes the
value of MAX to 1000000):

#include <stdio.h>
#include <pthread.h>

#define MAX 1000000
int counter = 0;

| void* count(void *arg) {
! for (int i = @; i < MAX; i++) {
i counter++;

! }

i pthread_exit(NULL);
L}

int main() {
pthread_t tidl, tid2;

pthread_create(&tidl, NULL, count, NULL);
pthread_create(&tid2, NULL, count, NULL);

pthread_join(tidl, NULL);

What is the value of the pthread_join(tid2, NULL);

variable counter in this
e line?

printf("counter: %d\n", counter);

return 0;

https://github.com/bonigarcia/c-programming/blob/master/mutex/race_condition_2.c

Systems Architecture - 9. Concurrency in C

5. Race conditions

* A race condition is a situation on concurrent programming where two
concurrent threads (or processes) compete for a resource and the
resulting final state depends on who gets the resource first

* A data race is specific type of race condition that occurs when several
threads access a shared variable and try to modify it at the same time

- In the previous example, a data race happens since two threads try to modify
the global variable counter at the same time

data

counter

7

tidl tid2

Each thread does the following
(read-compute-write):

Retrieve the value of counter

a.
g % b. Add 1 to this value

C.

counter++; counter++;

Store this value to counter

The scheduling algorithm can swap
between threads at any time, e.g.:

tid1: reads counter, value is 7

tid1: add 1 to counter, value is now 8
tid2: reads counter, value is 7

tid1: stores 8 in counter

tid2: adds 1 to counter, value is now 8
tid2: stores 8 in counter

Systems Architecture - 9. Concurrencyin C

5. Race conditions

* The term race condition in programming has been borrowed from the
hardware industry

* The term was coined with the idea of two signals racing each other to
influence the output first (e.g., a race condition in a logic circuit):

A _
‘ - D ANA
[>o
In software, instead of
signals, we have
A ‘ processes/threads

competing for the same
resource

Source:
https://en.wikipedia.org/wiki/Race condition

https://en.wikipedia.org/wiki/Race_condition

Systems Architecture - 9. Concurrencyin C

5. Race conditions

* Race conditions can be avoided by employing some sort of locking
mechanism before the code that accesses the shared resource

* For instance, in the previous example

' void* count(void *arg) { | We need to create a called

| for (int i = @; 1 < MAX; i++) { | critical section here, i.e., a

| // lock counter | protected region that only

! counter++;

| // unlock counter one process/thread can enter
} into at a time

| pthread exit(NULL);

Y

__

Systems Architecture - 9. Concurrencyin C

Table of contents

6. Mutexes

Systems Architecture - 9. Concurrencyin C

6. Mutexes

* A mutex (short from mutual exclusion), also called lock, is a
synchronization mechanism that enforces limits on access to a resource
when there are many threads of execution

— Synchronization is defined as a mechanism which ensures that two or more
concurrent threads do not simultaneously execute some particular program segment

 When a mutex is set, no other thread can access the locked region (critical
section)

* Mutexes are used to protect shared resources, preventing inconsistencies
due to race conditions

* |If a mutex is already locked by one thread, the other threads wait for the
mutex to become unlocked
— In other words, only one process/thread can enter into critical section at a time

Systems Architecture - 9. Concurrencyin C

6. Mutexes

* In C, a mutex is an special variable of type pthread_mutex_t that
can take two states: locked or unlocked

* The procedure to use a mutex in C is the following:
1. Declare a mutex (variable with type pthread mutex_ t)

2. |Initialize the mutex

3. Lock a mutex (creating a critical section)

4. Unlock the mutex (releasing the critical section)
5. Destroy the mutex

Systems Architecture - 9. Concurrencyin C

6. Mutexes

* To declare a mutex (1), we simply use:

* There are two ways of initializing (2) a mutex. In this course, we are
going to use mutexes with the default attributes, therefore the
initialization is as follows:

a) Using the macro PTHREAD MUTEX_ INITIALIZER:

Manual page:
https://linux.die.net/man/3/pthread mutex init

https://linux.die.net/man/3/pthread_mutex_init

Systems Architecture - 9. Concurrencyin C

6. Mutexes

* To lock a mutex (3), we need to invoke:

The piece of code between
these two statements is the
critical section

Systems Architecture - 9. Concurrency in C

#include <stdio.h> ‘\"S,.\‘\ |
#include <pthread.h> \‘f/a k.
6. Mutexes)
#define MAX 1000000 \\\f%é;\\\
* This program prevents the race tnt counter = 6;
Condition (Ca used for the pthread _mutex_t mutex = PTHREAD MUTEX_ INITIALIZER; A
concurrent access in the variable i s o S 1oy ¢
. . e hread mutex_ lock(&mutex);
counter) by creating a critical Countanrey e
. . thread_mutex_unlock(&mutex);
section using 4 mutex } i
pthread_exit(NULL);

pthread_t tidl, tid2;

pthread_create(&tidl, NULL, count, NULL);
pthread_create(&tid2, NULL, count, NULL);

pthread_join(tidl, NULL);
pthread_join(tid2, NULL);

printf("counter: %d\n", counter);
counter: 2000000

pthread_mutex_destroy(&mutex);

return O;

B!

int main() { E

https://github.com/bonigarcia/c-programming/blob/master/mutex/mutex.c

Systems Architecture - 9. Concurrencyin C

Table of contents

7. Deadlocks

Systems Architecture - 9. Concurrency in C

7. Deadlocks

* The bad use of mutex can lead to undesired behavior in our programs

* Deadlock is a situation where a set of threads are blocked because
each one is holding a resource (e.g. a mutex) and waiting for another
resource acquired by some other thread

"':;;5 ‘ ‘ Five silent philosophers sit at a round table with
G bowls of food. Forks are placed between each pair
ATE Y of philosophers. All day the philosophers take turns
4 1 30 / -. 0 eating and thinking. A philosopher must have two
L ' : forks in order to eat, and each fork may only be

A classic problem to model
deadlocks is “The Dining
Philosophers Problem”
(originally formulated in 1965
by Edsger Dijkstra)

=~ used by one philosopher at a time. At any time a
o/ philosopher can pick up or set down the fork on
their right or left, but cannot start eating until
picking up both forks.

Source: https://en.wikipedia.org/wiki/Dining philosophers problem

https://en.wikipedia.org/wiki/Dining_philosophers_problem

Systems Architecture - 9. Concurrency in C

7. Deadlocks
° #include <stdio.h> \\9? Y

#include <pthread.h>

pthread mutex_t mutex = PTHREAD MUTEX INITIALIZER;

* Deadlock example #1:

void* thread_1(void *data) {
pthread mutex_lock(&mutex);
printf("[PTHR: %1d]: Thread 1 started\n", pthread self());

pthread_exit(NULL);
}

void* thread_2(void *data) {
pthread mutex_lock(&mutex);
printf("[PTHR: %1d]: Thread 2 started\n", pthread self());
pthread mutex_unlock(&mutex);

IV @ wait for unlock | |
| pthread exit(NULL); i

}
mutex

int main() {
pthread t tidl, tid2;

tid1l tid2

pthread create(&tidl, NULL, thread 1, NULL);
pthread create(&tid2, NULL, thread 2, NULL);

pthread join(tidl, NULL);
pthread join(tid2, NULL);

pthread mutex_destroy(&mutex);

return 0;

__

https://github.com/bonigarcia/c-programming/blob/master/mutex/deadlock_1.c

Systems Architecture - 9. Concurrency in C

-
r - % \\\
#include <stdio.h> N\ X @ \\
ea OC S #include <pthread.h> A Oo R\
[] #include <unistd.h> \\0 R\
\\\C%,& &
pthread_mutex_t mutexl = PTHREAD MUTEX_INITIALIZER; . 05 N

pthread_mutex_t mutex2 = PTHREAD _MUTEX_INITIALIZER;

* Deadlock example #2:

lock @ wait for unlock

mutex1

void* thread_1(void *data) {
pthread_mutex_lock(&mutex1);
sleep(1);
pthread_mutex_lock(&mutex2);
printf("[PTHR: %1d]: Thread 1 started\n", pthread_self());
pthread_mutex_unlock(&mnutex2);
pthread_mutex_unlock(&mnutex1);

pthread_exit(NULL);
}

1

1

1

void* thread_2(void *data) { |
pthread_mutex_lock(&mutex2); |
pthread_mutex_lock(&mutex1); |
printf("[PTHR: %1d]: Thread 2 started\n", pthread_self()); |
pthread_mutex_unlock(&mutex1); |
pthread_mutex_unlock(&mnutex2); i
1

1

1

1

tidl tid2

pthread_exit(NULL);
}

int main() {
pthread_t tidl, tid2;

wait for unlock lock

pthread_create(&tidl, NULL, thread_1, NULL);
pthread_create(&tid2, NULL, thread_2, NULL);

mutex2
pthread_join(tidl, NULL);
pthread_join(tid2, NULL);

pthread_mutex_destroy(&mutex1);
pthread_mutex_destroy(&mutex2);

return 9;

https://github.com/bonigarcia/c-programming/blob/master/mutex/deadlock_2.c

Systems Architecture - 9. Concurrencyin C

Table of contents

8. Helgrind

Systems Architecture - 9. Concurrencyin C

8. Helgrind

e Concurrent programs can be very difficult to debug
- It is hard to make them happen the same way twice

* Concurrency bugs exhibit very poor reproducibility

— Each time you run a program containing a race condition, you may get
different behavior

- These kinds of bugs are sometimes called heisenbugs, since they are
nondeterministic and hard to reproduce
W

The term heisenbugs is coined from
the Heisenberg Uncertainty Principle
(quantum mechanics) which states
that the act of observing a system
inevitably alters its state

Systems Architecture - 9. Concurrencyin C

8. Helgrind

* To detect this kind of problems, the tool Helgrind (contained in
Valgrind) might help

* Helgrind is a Valgrind tool for detecting synchronization errors in C
programs that use the pthreads

* Helgrind can detect three classes of errors:
- Bad use of the pthreads API
— Potential deadlocks

— Race conditions (accessing memory without adequate locking or
synchronization)

Helgrind manual:
https://valgrind.org/docs/manual/hg-manual.html

https://valgrind.org/docs/manual/hg-manual.html

Systems Architecture - 7. Dynamic memory in C

8. Helgrind

* To use Helgrind in Valgrind we need to do the following:
1. Compile our program with the debug and pthread options:

gcc -g -pthread my program.c -o my_program

2. Invoke Valgrind passing the executable as argument:

valgrind --tool=helgrind ./my_program

Systems Architecture - 9. Concurrency in C

8. Helgrind

#include <stdio.h>
#include <pthread.h>

* For instance, as we have seen,
this program has an specific type
of race condition called data race

#define MAX 1000
int counter = 0;
void* count(void *arg) {

for (int i = @; i < MAX; i++) {
counter++;

* So, let’s analyze it with Helgrind

}
pthread_exit(NULL);
}

int main() {
pthread_t tidl, tid2;

pthread_create(&tidl, NULL, count, NULL);
pthread_create(&tid2, NULL, count, NULL);

pthread_join(tidl, NULL);
pthread_join(tid2, NULL);

printf("counter: %d\n", counter);

return 0;

https://github.com/bonigarcia/c-programming/blob/master/mutex/race_condition_1.c

Systems Architecture - 9. Concurrencyin C

° \\o’l'fﬁ K.
8. Helgrind

gcc -pthread -g race_condition 1.c -0 race _condition_ 1 \\f k.

valgrind --tool=helgrind ./race_condition 1

Helgrind, a thread error detector

Copyright (C) 2007-2017, and GNU GPL'd, by OpenWorks LLP et al.
Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
Command: ./race_condition_ 1

Possible data race during read of size 4 at 0x10C014 by thread #3
Locks held: none
at Ox1091E2: count (race_condition_1.c:10)
by 0x4842B1A: ??? (in /usr/lib/x86_64-linux-gnhu/valgrind/vgpreload _helgrind-amd64-1inux.so)
by 0x4861608: start thread (pthread create.c:477)
by 0x499D102: clone (clone.S:95)

= This conflicts with a previous write of size 4 by thread #2
Locks held: none
at Ox1091EB: count (race_condition_1.c:10)
by 0x4842B1A: ??? (in /usr/lib/x86_ 64-linux-gnu/valgrind/vgpreload helgrind-amd64-1linux.so)
by 0x4861608: start_thread (pthread _create.c:477)
by 0x499D102: clone (clone.S:95)
Address 0x10c014 is @ bytes inside data symbol "counter"

counter: 2000

==224==

==224== Use --history-level=approx or =none to gain increased speed, at

==224== the cost of reduced accuracy of conflicting-access information
For lists of detected and suppressed errors, rerun with: -s
ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 44 from 14)

https://github.com/bonigarcia/c-programming/blob/master/mutex/race_condition_1.c

Systems Architecture - 9. Concurrency in C

[+) N
o #include <stdio.h> ‘\?f@ \‘\
e grl n #include <pthread.h> A 00 R\
[] #include <unistd.h> S bt
i

pthread_mutex_t mutexl = PTHREAD MUTEX_INITIALIZER; \\‘&6 R
pthread_mutex_t mutex2 = PTHREAD MUTEX_INITIALIZER; A %

N

* Also, the following program
contained a deadlock, although most
of the times, the problem does not
happen in runtime

void* thread_1(void *data) {
pthread_mutex_lock(&mutex1);
pthread_mutex_lock(&mutex2);
printf("[PTHR: %1d]: Thread 1 started\n", pthread_self());
pthread_mutex_unlock(&mnutex2);
pthread_mutex_unlock(&mnutex1);

pthread_exit(NULL);
}

void* thread_2(void *data) {
pthread_mutex_lock(&mutex2);
pthread_mutex_lock(&mutex1);
printf("[PTHR: %1d]: Thread 2 started\n", pthread_self());
pthread_mutex_unlock(&mnutex1);

IOCk @ wait for UnIOCk i pthread_mutex_unlock(&mutex2); E
E pthread_exit(NULL); !

mutex1)

int main() {
pthread_t tidl, tid2;
tldl tldz pthread_create(&tidl, NULL, thread_1, NULL);
pthread_create(&tid2, NULL, thread_2, NULL);

pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

pthread_mutex_destroy(&mutex1);
pthread_mutex_destroy(&mutex2);

@ ‘/lock

mutex2

wait for unlock

return 0;

https://github.com/bonigarcia/c-programming/blob/master/mutex/deadlock_3.c

Systems Architecture - 9. Concurrencyin C

° \\o’l'fﬁ K.
8. Helgrind

gcc -pthread -g deadlock 3.c -o deadlock 3 A

valgrind --tool=helgrind ./deadlock_3

==531== Helgrind, a thread error detector

==531== Copyright (C) 2007-2017, and GNU GPL'd, by OpenWorks LLP et al.
==531== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==531== Command: ./deadlock 3

[PTHR: 86443776]: Thread 1 started

==227== Thread #3: lock order "©x10C040 before 0x10C080" violated

==227== Observed (incorrect) order is: acquisition of lock at ©x10C080
at Ox483FEDF: ??? (in /usr/lib/x86_64-1linux-gnu/valgrind/vgpreload_helgrind-amd64-1inux.so)
by 0x1092C7: thread_2 (deadlock 3.c:18)
by 0x4842B1A: ??? (in /usr/lib/x86_64-1inux-gnu/valgrind/vgpreload_helgrind-amd64-1inux.so)
by 0x4861608: start thread (pthread create.c:477)
by 0x499D102: clone (clone.S:95)

[PTHR: 99030784]: Thread 2 started

==531== Use --history-level=approx or =none to gain increased speed, at
==531== the cost of reduced accuracy of conflicting-access information
==531== For lists of detected and suppressed errors, rerun with: -s
==531== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 55 from 25)

https://github.com/bonigarcia/c-programming/blob/master/mutex/deadlock_3.c

Systems Architecture - 9. Concurrencyin C

° \\ol;f\\\\
R
8. Helgrind
N % N
* As usual, we aim to get zero errors in the Valgrind report:

gcc -pthread -g deadlock 3 sol.c -o deadlock 3 sol

valgrind --tool=helgrind --history-level=approx ./deadlock 3 sol

==593== Helgrind, a thread error detector

==593== Copyright (C) 2007-2017, and GNU GPL'd, by OpenWorks LLP et al.
==593== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==593== Command: ./deadlock 3 sol

==593==

[PTHR: 86443776]: Thread 1 started

[PTHR: 99030784]: Thread 2 started

==593==

==593== For lists of detected and suppressed errors, rerun with: -s
==593== ERROR SUMMARY: @ errors from @ contexts (suppressed: 51 from 21)

https://github.com/bonigarcia/c-programming/blob/master/mutex/deadlock_3_sol.c

Systems Architecture - 9. Concurrencyin C

Table of contents

9. Takeaways

Systems Architecture - 9. Concurrencyin C

O. Takeaways

* In programming, concurrency means multiple tasks are happening at the same time
(run in parallel in multiple processor or by time slicing on a single processor)

* These tasks can be processes (program in execution in an operating system) or
threads (piece of code within a process)

* In C, we use the POSIX threads (pthreads) APl to manage threads

* A race condition happens when concurrent threads (or processes) compete for a
shared resource and the resulting final state depends on who gets the resource first

* To avoid race conditions we can use mutexes (mutual exclusion) to protect shared
resources. If a mutex is locked by a thread (critical section), other threads wait for
the mutex to become unlocked

* Deadlock is a situation where a set of threads are blocked because each one is
holding a resource (e.g. a mutex) and waiting for another resource acquired by
some other thread

e Helgrind is a Valgrind tool for detecting synchronization errors (such as deadlocks or
race conditions) in concurrent C programs

	Systems Architecture
	Table of contents
	1. Introduction
	Table of contents
	2. Concurrency basics
	2. Concurrency basics
	2. Concurrency basics
	2. Concurrency basics
	Table of contents
	3. Processes vs threads - Processes
	3. Processes vs threads - Threads
	3. Processes vs threads - Comparison
	3. Processes vs threads - Multitasking
	Table of contents
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	Table of contents
	5. Race conditions
	5. Race conditions
	5. Race conditions
	5. Race conditions
	5. Race conditions
	Table of contents
	6. Mutexes
	6. Mutexes
	6. Mutexes
	6. Mutexes
	6. Mutexes
	Table of contents
	7. Deadlocks
	7. Deadlocks
	7. Deadlocks
	Table of contents
	8. Helgrind
	8. Helgrind
	8. Helgrind
	8. Helgrind
	8. Helgrind
	8. Helgrind
	8. Helgrind
	8. Helgrind
	Table of contents
	9. Takeaways

