
Systems Architecture
9. Concurrency in C

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. Concurrency basics
3. Processes vs threads
4. POSIX threads
5. Race conditions
6. Mutexes
7. Deadlocks
8. Helgrind
9. Takeaways

Systems Architecture - 9. Concurrency in C 2

1. Introduction
• In software, concurrency means multiple computations are

happening at the same time
• Concurrency is essential in modern programming to improve

performance, for instance:
− Web servers must handle multiple simultaneous users
− Mobile apps need to do some of their processing on servers
− Graphical User Interfaces (GUIs) require background work that does not

interrupt the user

• In this unit, we learn the basics of concurrent programming in C:
− How to manage threads
− How to synchronize threads

Systems Architecture - 9. Concurrency in C 3

Table of contents
1. Introduction
2. Concurrency basics
3. Processes vs threads
4. POSIX threads
5. Race conditions
6. Mutexes
7. Deadlocks
8. Helgrind
9. Takeaways

Systems Architecture - 9. Concurrency in C 4

2. Concurrency basics
• Generally speaking, concurrency is about two or more separate

activities happening at the same time

Systems Architecture - 9. Concurrency in C 5

Task A Task B Task C
A, B, C are executed

sequentially (i.e., one
after the other)

Task A
Task B

Task C

time

B and C are
happens at the

same time

2. Concurrency basics
• Computer systems generally consist of the following parts:

− The Central Processing Unit (CPU): executes instructions of computer programs
− Primary memory: holds the programs and data to be processed
− I/O (input/output) devices: peripherals that communicate with the outside

world
− Bus: communication system that transfers data between components

Systems Architecture - 9. Concurrency in C 6

CPU

Memory I/O

bus

single-core system

CPU

Memory I/O

bus

multi-core system

core #1

core #N
…

Each core is a
single processing

units (CPU)

CPU

2. Concurrency basics
• In computer systems, we can distinguish between:

− Concurrency: multiple tasks are performed in overlapping time periods with
shared resources (e.g., time slicing on a single-core machine)

− Parallelism: multiple tasks are tasks literally run at the same time (e.g., on a
multicore processor)

Systems Architecture - 9. Concurrency in C 7

CPU #1

CPU #2

CPU #3

Task A

Task B

Task C

Physical concurrency

Logical concurrency

2. Concurrency basics
• There are two main models for concurrent programming:
1. Shared memory: concurrent modules interact by reading and

writing shared data in the same memory segment. For instance:
− Two processes running in the same computer, reading and writing in the same

filesystem
− Two threads in the same process sharing the same variables

2. Message passing. In the message-passing model, concurrent
modules interact by sending messages to each other through a
communication channel. For instance:
− Two processes running in different computers connected by the network
− Two processes running in the same computer connected by a pipe

Systems Architecture - 9. Concurrency in C 8

Table of contents
1. Introduction
2. Concurrency basics
3. Processes vs threads

- Processes
- Threads
- Comparison
- Multitasking

4. POSIX threads
5. Race conditions
6. Mutexes
7. Deadlocks
8. Helgrind
9. Takeaways

Systems Architecture - 9. Concurrency in C 9

3. Processes vs threads - Processes
• A process is an executing program in a given operating system (e.g.,

Linux, Windows, macOS, etc.)
− We use a separate system call (called fork in Unix-like systems) to create a

process
− Each process is independent and treated as an isolated entity in the operating

system
− Each process exists within its own address or memory space
− Processes use some mechanisms called IPC (Inter-Process Communication) to

communicate with each other, such as:
• Files, sockets, message queue, pipes, or signals, among other mechanisms

Systems Architecture - 9. Concurrency in C 10

3. Processes vs threads - Threads
• A thread is an execution unit that is part of a process

− A process can have more than one thread
− A thread is lightweight and can be managed independently
− The thread takes less time to terminate as compared to the process but unlike

the process, threads do not isolate

Systems Architecture - 9. Concurrency in C 11

code data stack

Single-threaded process Multi-threaded process

heap code data stack heap

3. Processes vs threads - Comparison
• The key differences between processes and threads are:

Systems Architecture - 9. Concurrency in C 12

Processes Threads

Definition Execution of a program Segment of a process

Execution time Processes takes more time for creation and
termination

Threads takes less time for creation and
termination

Memory Process are totally isolated (don’t share
memory)

Threads share memory

Communication Processes must use inter-process
communication (files, signals, pipes, etc.) to
communicate with other processes

Threads can directly communicate with
other threads of its process using shared
memory

Controlled by Process is controlled by the operating
system

Threads are controlled by programmer in
a program

3. Processes vs threads - Multitasking
• Concurrency at the operating system level is called multitasking (i.e., the

concurrent execution of multiple processes over time)
− To implement multitasking, the operating systems use a process scheduler to decide

which process uses the CPU and for how long
• The most common process scheduler in Linux is called Completely Fair

Scheduler (CFS)
− CFS implements an algorithm to handle the scheduling of runnable entities (called

tasks) which are either threads or (single-threaded) processes
− CFS uses a technique called context switching to save and restore the state of the tasks

being executed

Systems Architecture - 9. Concurrency in C 13

time

CPU T1 T2

Memory

save

T1

restore

T2

https://docs.kernel.org/scheduler/sched-design-CFS.html

Table of contents
1. Introduction
2. Concurrency basics
3. Processes vs threads
4. POSIX threads
5. Race conditions
6. Mutexes
7. Deadlocks
8. Helgrind
9. Takeaways

Systems Architecture - 9. Concurrency in C 14

4. POSIX threads
• POSIX threads (pthreads) is a parallel execution model based on

standards
− POSIX (Portable Operating System Interface) is a family of IEEE standards to

ensure compatibility between operating systems

• Pthreads are implemented in the C language in the pthread.h
library
− Once created, each thread progresses independently. This causes each of the

threads can potentially travel at a different speed, running concurrently

• Programs that use pthreads need to be compiled with the option
-pthread (to add support for multithreading)

Systems Architecture - 9. Concurrency in C 15

gcc program.c -pthread

4. POSIX threads
• The pthread_create() function starts a new thread in the calling

process. Its prototype is as follows:

− Number of arguments: 4
• 1st argument (thread): Pointer to the thread id (unique identifier)
• 2nd argument (attr): Pointer to the configuration attributes for the new thread. If it is
NULL, the thread is created with default attributes

• 3rd argument (start_routine): Function executed as a new thread
• 4th argument (arg): Pointer to the arguments of the function passed as the 3rd argument

− Return value:
• On success: 0
• On error: error number (different than 0)

Systems Architecture - 9. Concurrency in C 16

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg);

4. POSIX threads
• The pthread_join() function is used in order to wait for a thread

to complete its execution. Its prototype is as follows:

− Number of arguments: 2
• 1st argument (thread): Thread id that the current thread is waiting for
• 2nd argument (thread_return): pointer that points to the location that stores the

return status of the thread id that is referred to in the 1st argument
− Return value:

• On success: 0
• On error: error number (different than 0)

Systems Architecture - 9. Concurrency in C 17

int pthread_join(pthread_t thread, void **thread_return);

4. POSIX threads
• The pthread_exit() function is used to terminate a thread

− Number of arguments: 1
• 1st argument (retval): Pointer to the return value (integer). This value has the return

status of the thread

• The pthread_self() function obtain the id of the calling thread

− Return value: calling thread’s id

Systems Architecture - 9. Concurrency in C 18

void pthread_exit(void *retval);

pthread_t pthread_self(void);

4. POSIX threads
• The usual procedure to use POSIX threads in a C program is as

follows:
1. Declare a variable to identify the thread (type pthread_t)
2. Define the thread function (void* my_thread(void *data) {…})

• Optionally, this function can control some input arguments
• Also optionally, it can return some value

3. Create thread (invoking function pthread_create(…))
• We can implement error handling here

4. Synchronize threads. We typically wait for thread to finish (invoking function
pthread_join(…))
• Returned values are handled with this function

Systems Architecture - 9. Concurrency in C 19

4. POSIX threads
• Example 1: creating a thread without passing data and without return

value

Systems Architecture - 9. Concurrency in C 20

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

void* thread_run(void *data) {
pthread_t pt_id = pthread_self();
printf("[PTHR: %ld]: New thread started\n", pt_id);

sleep(3);

printf("[PTHR: %ld]: Finishing new thread\n", pt_id);
pthread_exit(NULL);

}

int main() {
pthread_t thread_id;
pthread_t main_id = pthread_self();

printf("[MAIN: %ld]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, NULL);
if (thread_rc != 0) {

printf("Error creating thread %i\n", thread_rc);
exit(1);

}

pthread_join(thread_id, NULL);
printf("[MAIN: %ld]: Thread finished\n", main_id);

return 0;
}

[MAIN: 140343014979392]: Starting new thread from main
[PTHR: 140343014975232]: New thread started
[PTHR: 140343014975232]: Finishing new thread
[MAIN: 140343014979392]: Thread finished

The sleep function
pauses the

execution a number
of seconds

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-1.c

4. POSIX threads
• Example 2: creating a thread

passing data (an integer value)
and without return value

Systems Architecture - 9. Concurrency in C 21

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

void* thread_run(void *data) {
pthread_t pt_id = pthread_self();
printf("[PTHR: %ld]: New thread started\n", pt_id);

int *th_data = (int*) data;
printf("[PTHR: %ld]: Data received: %d\n", pt_id, *th_data);

sleep(3);

printf("[PTHR: %ld]: Finishing new thread\n", pt_id);
pthread_exit(NULL);

}

int main() {
pthread_t thread_id;
pthread_t main_id = pthread_self();
int data = 10;

printf("[MAIN: %ld]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, &data);
if (thread_rc != 0) {

printf("Error creating thread %i\n", thread_rc);
exit(1);

}

pthread_join(thread_id, NULL);
printf("[MAIN: %ld]: Thread finished\n", main_id);

return 0;
}

[MAIN: 139984335865664]: Starting new thread from main
[PTHR: 139984335861504]: New thread started
[PTHR: 139984335861504]: Data received: 10
[PTHR: 139984335861504]: Finishing new thread
[MAIN: 139984335865664]: Thread finished

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-2.c

4. POSIX threads
• Example 3: creating a thread

passing data (a struct) and
without return value

Systems Architecture - 9. Concurrency in C 22

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

typedef struct thread_data {
int a;
int b;

} thread_data;

void* thread_run(void *data) {
pthread_t pt_id = pthread_self();
printf("[PTHR: %ld]: New thread started\n", pt_id);

thread_data *th_data = (thread_data*) data;
printf("[PTHR: %ld]: Data received: %d %d\n", pt_id, th_data->a,

th_data->b);

sleep(3);

printf("[PTHR: %ld]: Finishing new thread\n", pt_id);
pthread_exit(NULL);

}

int main() {
pthread_t thread_id;
pthread_t main_id = pthread_self();
thread_data data = { .a = 10, .b = 20 };

printf("[MAIN: %ld]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, &data);
if (thread_rc != 0) {

printf("Error creating thread %i\n", thread_rc);
exit(1);

}

pthread_join(thread_id, NULL);
printf("[MAIN: %ld]: Thread finished\n", main_id);

return 0;
}

[MAIN: 140021651552064]: Starting new thread from main
[PTHR: 140021651547904]: New thread started
[PTHR: 140021651547904]: Data received: 10 20
[PTHR: 140021651547904]: Finishing new thread
[MAIN: 140021651552064]: Thread finished

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-3.c

4. POSIX threads
• Example 4: creating a thread

passing data (an integer
value) and with a return
value (another integer value)

Systems Architecture - 9. Concurrency in C 23

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

void* thread_run(void *data) {
pthread_t pt_id = pthread_self();
printf("[PTHR: %ld]: New thread started\n", pt_id);

sleep(3);

printf("[PTHR: %ld]: Finishing new thread\n", pt_id);

int ret = 42;
pthread_exit(&ret);

}

int main() {
pthread_t thread_id;
pthread_t main_id = pthread_self();

printf("[MAIN: %ld]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, NULL);
if (thread_rc != 0) {

printf("Error creating thread %i\n", thread_rc);
exit(1);

}

int *output;
pthread_join(thread_id, (void**) &output);
printf("[MAIN: %ld]: Thread finished, returning %d\n", main_id, *output);

return 0;
}

[MAIN: 140594746173248]: Starting new thread from main
[PTHR: 140594746169088]: New thread started
[PTHR: 140594746169088]: Finishing new thread
[MAIN: 140594746173248]: Thread finished, returning 32764

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-4.c

4. POSIX threads
• Example 5: creating a thread

passing data (an integer
value) and with a return
value (another integer value)

Systems Architecture - 9. Concurrency in C 24

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

void* thread_run(void *data) {
pthread_t pt_id = pthread_self();
printf("[PTHR: %ld]: New thread started\n", pt_id);

sleep(3);

printf("[PTHR: %ld]: Finishing new thread\n", pt_id);

int *ret = malloc(sizeof(int));
*ret = 42;
pthread_exit(ret);

}

int main() {
pthread_t thread_id;
pthread_t main_id = pthread_self();

printf("[MAIN: %ld]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, NULL);
if (thread_rc != 0) {

printf("Error creating thread %i\n", thread_rc);
exit(1);

}

int *output;
pthread_join(thread_id, (void**) &output);
printf("[MAIN: %ld]: Thread finished, returning %d\n", main_id, *output);
free(output);

return 0;
}

[MAIN: 139752538543936]: Starting new thread from main
[PTHR: 139752538539776]: New thread started
[PTHR: 139752538539776]: Finishing new thread
[MAIN: 139752538543936]: Thread finished, returning 42

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-5.c

4. POSIX threads
• Example 6: creating a thread

passing data (a struct) and with
a return value (an integer value)

Systems Architecture - 9. Concurrency in C 25

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

typedef struct thread_data {
int a;
int b;
int result;

} thread_data;

void* thread_run(void *data) {
pthread_t pt_id = pthread_self();
printf("[PTHR: %ld]: New thread started\n", pt_id);

thread_data *th_data = (thread_data*) data;
printf("[PTHR: %ld]: Data received: %d %d\n", pt_id, th_data->a,

th_data->b);

sleep(3);

printf("[PTHR: %ld]: Finishing new thread\n", pt_id);

th_data->result = 42;
pthread_exit(NULL);

}

int main() {
pthread_t thread_id;
pthread_t main_id = pthread_self();
thread_data data = { .a = 10, .b = 20 };

printf("[MAIN: %ld]: Starting new thread from main\n", main_id);
int thread_rc = pthread_create(&thread_id, NULL, thread_run, &data);
if (thread_rc != 0) {

printf("Error creating thread %i\n", thread_rc);
exit(1);

}

pthread_join(thread_id, NULL);
printf("[MAIN: %ld]: Thread finished, returning %d\n", main_id, data.result);

return 0;
}

[MAIN: 140524621989696]: Starting new thread from main
[PTHR: 140524621985536]: New thread started
[PTHR: 140524621985536]: Data received: 10 20
[PTHR: 140524621985536]: Finishing new thread
[MAIN: 140524621989696]: Thread finished, returning 42

https://github.com/bonigarcia/c-programming/blob/master/pthreads/threads-6.c

4. POSIX threads

Systems Architecture - 9. Concurrency in C 26

• Multitasking improves the operating systems performance, but it also
adds complexity
− Because threads can run simultaneously, there’s no inherent guarantee about

the order in which parts of your code on different threads will run

• This can lead to problems, such as:
− Race conditions, in which threads are accessing data or resources in an

inconsistent order
− Deadlocks, in which two threads are waiting for each other, preventing both

threads from continuing
− Bugs that only happen in certain situations and are hard to reproduce and fix

reliably

Table of contents
1. Introduction
2. Concurrency basics
3. Processes vs threads
4. POSIX threads
5. Race conditions
6. Mutexes
7. Deadlocks
8. Helgrind
9. Takeaways

Systems Architecture - 9. Concurrency in C 27

5. Race conditions

Systems Architecture - 9. Concurrency in C 28

#include <stdio.h>
#include <pthread.h>

#define MAX 1000

int counter = 0;

void* count(void *arg) {
for (int i = 0; i < MAX; i++) {

counter++;
}
pthread_exit(NULL);

}

int main() {
pthread_t tid1, tid2;

pthread_create(&tid1, NULL, count, NULL);
pthread_create(&tid2, NULL, count, NULL);

pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

printf("counter: %d\n", counter);

return 0;
}

What is the value of the
variable counter in this

line?

• Concurrent programs can suffer
from synchronization problems
that make the program to exhibit
an unexpected behavior

• For example, consider the
following program:

https://github.com/bonigarcia/c-programming/blob/master/mutex/race_condition_1.c

5. Race conditions

Systems Architecture - 9. Concurrency in C 29

• Now, consider the following
alternative (it only changes the
value of MAX to 1000000):

#include <stdio.h>
#include <pthread.h>

#define MAX 1000000

int counter = 0;

void* count(void *arg) {
for (int i = 0; i < MAX; i++) {

counter++;
}
pthread_exit(NULL);

}

int main() {
pthread_t tid1, tid2;

pthread_create(&tid1, NULL, count, NULL);
pthread_create(&tid2, NULL, count, NULL);

pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

printf("counter: %d\n", counter);

return 0;
}

What is the value of the
variable counter in this

line?

https://github.com/bonigarcia/c-programming/blob/master/mutex/race_condition_2.c

5. Race conditions
• A race condition is a situation on concurrent programming where two

concurrent threads (or processes) compete for a resource and the
resulting final state depends on who gets the resource first

• A data race is specific type of race condition that occurs when several
threads access a shared variable and try to modify it at the same time
− In the previous example, a data race happens since two threads try to modify

the global variable counter at the same time

Systems Architecture - 9. Concurrency in C 30

tid1 tid2
data

7

counter

Each thread does the following
(read-modify-write):

a. Retrieve the value of counter
b. Add 1 to this value
c. Store this value to counter

The scheduling algorithm can swap
between threads at any time, e.g.:

tid1: reads counter, value is 7
tid1: add 1 to counter, value is now 8
tid2: reads counter, value is 7
tid1: stores 8 in counter
tid2: adds 1 to counter, value is now 8
tid2: stores 8 in countercounter++; counter++;

5. Race conditions
• The term race condition in programming has been borrowed from the

hardware industry
• The term was coined with the idea of two signals racing each other to

influence the output first (e.g., a race condition in a logic circuit):

Systems Architecture - 9. Concurrency in C 31

Source:
https://en.wikipedia.org/wiki/Race_condition

In software, instead of
signals, we have

processes/threads
competing for the same

resource

https://en.wikipedia.org/wiki/Race_condition

5. Race conditions
• Race conditions can be avoided by employing some sort of locking

mechanism before the code that accesses the shared resource
• For instance, in the previous example

Systems Architecture - 9. Concurrency in C 32

void* count(void *arg) {
for (int i = 0; i < MAX; i++) {

// lock counter
counter++;
// unlock counter

}
pthread_exit(NULL);

}

We need to create a called
critical section here, i.e., a
protected region that only

one process/thread can enter
into at a time

Table of contents
1. Introduction
2. Concurrency basics
3. Processes vs threads
4. POSIX threads
5. Race conditions
6. Mutexes
7. Deadlocks
8. Helgrind
9. Takeaways

Systems Architecture - 9. Concurrency in C 33

6. Mutexes
• A mutex (short from mutual exclusion), also called lock, is a

synchronization mechanism that enforces limits on access to a resource
when there are many threads of execution
− Synchronization is defined as a mechanism which ensures that two or more

concurrent threads do not simultaneously execute some particular program segment

• When a mutex is set, no other thread can access the locked region (critical
section)

• Mutexes are used to protect shared resources, preventing inconsistencies
due to race conditions

• If a mutex is already locked by one thread, the other threads wait for the
mutex to become unlocked
− In other words, only one process/thread can enter into critical section at a time

Systems Architecture - 9. Concurrency in C 34

6. Mutexes
• In C, a mutex is an special variable of type pthread_mutex_t that

can take two states: locked or unlocked
• The procedure to use a mutex in C is the following:

1. Declare a mutex (variable with type pthread_mutex_t)
2. Initialize the mutex
3. Lock a mutex (creating a critical section)
4. Unlock the mutex (releasing the critical section)
5. Destroy the mutex

Systems Architecture - 9. Concurrency in C 35

6. Mutexes
• To declare a mutex (1), we simply use:

• There are two ways of initializing (2) a mutex. In this course, we are
going to use mutexes with the default attributes, therefore the
initialization is as follows:

a) Using the macro PTHREAD_MUTEX_INITIALIZER:

b) Calling to the function pthread_mutex_init:

Systems Architecture - 9. Concurrency in C 36

pthread_mutex_t mutex;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_init(&mutex, NULL);

Manual page:
https://linux.die.net/man/3/pthread_mutex_init

https://linux.die.net/man/3/pthread_mutex_init

6. Mutexes
• To lock a mutex (3), we need to invoke:

• To unlock a mutex (4), we need to invoke:

• When the unlock is not required anymore, we need to destroy it (5):

Systems Architecture - 9. Concurrency in C 37

pthread_mutex_lock(&mutex);

pthread_mutex_unlock(&mutex);

pthread_mutex_destroy(&mutex);

The piece of code between
these two statements is the
critical section

6. Mutexes
• This program prevents the race

condition (caused for the
concurrent access in the variable
counter) by creating a critical
section using a mutex

Systems Architecture - 9. Concurrency in C 38

#include <stdio.h>
#include <pthread.h>

#define MAX 1000000

int counter = 0;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

void* count(void *arg) {
for (int i = 0; i < MAX; i++) {

pthread_mutex_lock(&mutex);
counter++;
pthread_mutex_unlock(&mutex);

}
pthread_exit(NULL);

}

int main() {
pthread_t tid1, tid2;

pthread_create(&tid1, NULL, count, NULL);
pthread_create(&tid2, NULL, count, NULL);

pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

printf("counter: %d\n", counter);

pthread_mutex_destroy(&mutex);

return 0;
}

counter: 2000000

https://github.com/bonigarcia/c-programming/blob/master/mutex/mutex.c

Table of contents
1. Introduction
2. Concurrency basics
3. Processes vs threads
4. POSIX threads
5. Race conditions
6. Mutexes
7. Deadlocks
8. Helgrind
9. Takeaways

Systems Architecture - 9. Concurrency in C 39

7. Deadlocks
• The bad use of mutex can lead to undesired behavior in our programs
• Deadlock is a situation where a set of threads are blocked because

each one is holding a resource (e.g. a mutex) and waiting for another
resource acquired by some other thread

Systems Architecture - 9. Concurrency in C 40

A classic problem to model
deadlocks is “The Dining
Philosophers Problem”

(originally formulated in 1965
by Edsger Dijkstra)

Source: https://en.wikipedia.org/wiki/Dining_philosophers_problem

Five silent philosophers sit at a round table with
bowls of food. Forks are placed between each pair
of philosophers. All day the philosophers take turns
eating and thinking. A philosopher must have two
forks in order to eat, and each fork may only be
used by one philosopher at a time. At any time a
philosopher can pick up or set down the fork on
their right or left, but cannot start eating until
picking up both forks.

https://en.wikipedia.org/wiki/Dining_philosophers_problem

7. Deadlocks
• Deadlock example #1:

Systems Architecture - 9. Concurrency in C 41

#include <stdio.h>
#include <pthread.h>

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

void* thread_1(void *data) {
pthread_mutex_lock(&mutex);
printf("[PTHR: %ld]: Thread 1 started\n", pthread_self());

pthread_exit(NULL);
}

void* thread_2(void *data) {
pthread_mutex_lock(&mutex);
printf("[PTHR: %ld]: Thread 2 started\n", pthread_self());
pthread_mutex_unlock(&mutex);

pthread_exit(NULL);
}

int main() {
pthread_t tid1, tid2;

pthread_create(&tid1, NULL, thread_1, NULL);
pthread_create(&tid2, NULL, thread_2, NULL);

pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

pthread_mutex_destroy(&mutex);

return 0;
}

tid1 tid2

mutex

wait for unlocklock

https://github.com/bonigarcia/c-programming/blob/master/mutex/deadlock_1.c

7. Deadlocks
• Deadlock example #2:

Systems Architecture - 9. Concurrency in C 42

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;

void* thread_1(void *data) {
pthread_mutex_lock(&mutex1);
sleep(1);
pthread_mutex_lock(&mutex2);
printf("[PTHR: %ld]: Thread 1 started\n", pthread_self());
pthread_mutex_unlock(&mutex2);
pthread_mutex_unlock(&mutex1);

pthread_exit(NULL);
}

void* thread_2(void *data) {
pthread_mutex_lock(&mutex2);
pthread_mutex_lock(&mutex1);
printf("[PTHR: %ld]: Thread 2 started\n", pthread_self());
pthread_mutex_unlock(&mutex1);
pthread_mutex_unlock(&mutex2);

pthread_exit(NULL);
}

int main() {
pthread_t tid1, tid2;

pthread_create(&tid1, NULL, thread_1, NULL);
pthread_create(&tid2, NULL, thread_2, NULL);

pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

pthread_mutex_destroy(&mutex1);
pthread_mutex_destroy(&mutex2);

return 0;
}

tid1 tid2

mutex1

mutex2

wait for unlock

wait for unlock

lock

lock

https://github.com/bonigarcia/c-programming/blob/master/mutex/deadlock_2.c

Table of contents
1. Introduction
2. Concurrency basics
3. Processes vs threads
4. POSIX threads
5. Race conditions
6. Mutexes
7. Deadlocks
8. Helgrind
9. Takeaways

Systems Architecture - 9. Concurrency in C 43

8. Helgrind
• Concurrent programs can be very difficult to debug

− It is hard to make them happen the same way twice

• Concurrency bugs exhibit very poor reproducibility
− Each time you run a program containing a race condition, you may get

different behavior
− These kinds of bugs are sometimes called heisenbugs, since they are

nondeterministic and hard to reproduce

Systems Architecture - 9. Concurrency in C 44

The term heisenbugs is coined from
the Heisenberg Uncertainty Principle
(quantum mechanics) which states
that the act of observing a system

inevitably alters its state

8. Helgrind
• To detect this kind of problems, the tool Helgrind (contained in

Valgrind) might help
• Helgrind is a Valgrind tool for detecting synchronization errors in C

programs that use the pthreads
• Helgrind can detect three classes of errors:

− Bad use of the pthreads API
− Potential deadlocks
− Race conditions (accessing memory without adequate locking or

synchronization)

Systems Architecture - 9. Concurrency in C 45

Helgrind manual:
https://valgrind.org/docs/manual/hg-manual.html

https://valgrind.org/docs/manual/hg-manual.html

8. Helgrind
• To use Helgrind in Valgrind we need to do the following:
1. Compile our program with the debug and pthread options:

2. Invoke Valgrind passing the executable as argument:

Systems Architecture - 7. Dynamic memory in C 46

gcc -g -pthread my_program.c -o my_program

valgrind --tool=helgrind ./my_program

8. Helgrind
• For instance, as we have seen,

this program has an specific type
of race condition called data race

• So, let’s analyze it with Helgrind

Systems Architecture - 9. Concurrency in C 47

#include <stdio.h>
#include <pthread.h>

#define MAX 1000

int counter = 0;

void* count(void *arg) {
for (int i = 0; i < MAX; i++) {

counter++;
}
pthread_exit(NULL);

}

int main() {
pthread_t tid1, tid2;

pthread_create(&tid1, NULL, count, NULL);
pthread_create(&tid2, NULL, count, NULL);

pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

printf("counter: %d\n", counter);

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/mutex/race_condition_1.c

8. Helgrind

Systems Architecture - 9. Concurrency in C 48

gcc -pthread -g race_condition_1.c -o race_condition_1

valgrind --tool=helgrind ./race_condition_1

==224== Helgrind, a thread error detector
==224== Copyright (C) 2007-2017, and GNU GPL'd, by OpenWorks LLP et al.
==224== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==224== Command: ./race_condition_1
...
==224== Possible data race during read of size 4 at 0x10C014 by thread #3
==224== Locks held: none
==224== at 0x1091E2: count (race_condition_1.c:10)
==224== by 0x4842B1A: ??? (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_helgrind-amd64-linux.so)
==224== by 0x4861608: start_thread (pthread_create.c:477)
==224== by 0x499D102: clone (clone.S:95)
==224==
==224== This conflicts with a previous write of size 4 by thread #2
==224== Locks held: none
==224== at 0x1091EB: count (race_condition_1.c:10)
==224== by 0x4842B1A: ??? (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_helgrind-amd64-linux.so)
==224== by 0x4861608: start_thread (pthread_create.c:477)
==224== by 0x499D102: clone (clone.S:95)
==224== Address 0x10c014 is 0 bytes inside data symbol "counter"
...
counter: 2000
==224==
==224== Use --history-level=approx or =none to gain increased speed, at
==224== the cost of reduced accuracy of conflicting-access information
==224== For lists of detected and suppressed errors, rerun with: -s
==224== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 44 from 14)

https://github.com/bonigarcia/c-programming/blob/master/mutex/race_condition_1.c

8. Helgrind
• Also, the following program

contained a deadlock, although most
of the times, the problem does not
happen in runtime

Systems Architecture - 9. Concurrency in C 49

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;

void* thread_1(void *data) {
pthread_mutex_lock(&mutex1);
pthread_mutex_lock(&mutex2);
printf("[PTHR: %ld]: Thread 1 started\n", pthread_self());
pthread_mutex_unlock(&mutex2);
pthread_mutex_unlock(&mutex1);

pthread_exit(NULL);
}

void* thread_2(void *data) {
pthread_mutex_lock(&mutex2);
pthread_mutex_lock(&mutex1);
printf("[PTHR: %ld]: Thread 2 started\n", pthread_self());
pthread_mutex_unlock(&mutex1);
pthread_mutex_unlock(&mutex2);

pthread_exit(NULL);
}

int main() {
pthread_t tid1, tid2;

pthread_create(&tid1, NULL, thread_1, NULL);
pthread_create(&tid2, NULL, thread_2, NULL);

pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

pthread_mutex_destroy(&mutex1);
pthread_mutex_destroy(&mutex2);

return 0;
}

tid1 tid2

mutex1

mutex2

wait for unlock

wait for unlock

lock

lock

https://github.com/bonigarcia/c-programming/blob/master/mutex/deadlock_3.c

8. Helgrind

Systems Architecture - 9. Concurrency in C 50

gcc -pthread -g deadlock_3.c -o deadlock_3

valgrind --tool=helgrind ./deadlock_3

==531== Helgrind, a thread error detector
==531== Copyright (C) 2007-2017, and GNU GPL'd, by OpenWorks LLP et al.
==531== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==531== Command: ./deadlock_3
==531==
[PTHR: 86443776]: Thread 1 started
...
==227== Thread #3: lock order "0x10C040 before 0x10C080" violated
==227==
==227== Observed (incorrect) order is: acquisition of lock at 0x10C080
==227== at 0x483FEDF: ??? (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_helgrind-amd64-linux.so)
==227== by 0x1092C7: thread_2 (deadlock_3.c:18)
==227== by 0x4842B1A: ??? (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_helgrind-amd64-linux.so)
==227== by 0x4861608: start_thread (pthread_create.c:477)
==227== by 0x499D102: clone (clone.S:95)
...

[PTHR: 99030784]: Thread 2 started
==531==
==531== Use --history-level=approx or =none to gain increased speed, at
==531== the cost of reduced accuracy of conflicting-access information
==531== For lists of detected and suppressed errors, rerun with: -s
==531== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 55 from 25)

https://github.com/bonigarcia/c-programming/blob/master/mutex/deadlock_3.c

8. Helgrind
• As usual, we aim to get zero errors in the Valgrind report:

Systems Architecture - 9. Concurrency in C 51

gcc -pthread -g deadlock_3_sol.c -o deadlock_3_sol

valgrind --tool=helgrind --history-level=approx ./deadlock_3_sol

==593== Helgrind, a thread error detector
==593== Copyright (C) 2007-2017, and GNU GPL'd, by OpenWorks LLP et al.
==593== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==593== Command: ./deadlock_3_sol
==593==
[PTHR: 86443776]: Thread 1 started
[PTHR: 99030784]: Thread 2 started
==593==
==593== For lists of detected and suppressed errors, rerun with: -s
==593== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 51 from 21)

https://github.com/bonigarcia/c-programming/blob/master/mutex/deadlock_3_sol.c

Table of contents
1. Introduction
2. Concurrency basics
3. Processes vs threads
4. POSIX threads
5. Race conditions
6. Mutexes
7. Deadlocks
8. Helgrind
9. Takeaways

Systems Architecture - 9. Concurrency in C 52

9. Takeaways
• In programming, concurrency means multiple tasks are happening at the same time

(run in parallel in multiple processor or by time slicing on a single processor)
• These tasks can be processes (program in execution in an operating system) or

threads (piece of code within a process)
• In C, we use the POSIX threads (pthreads) API to manage threads
• A race condition happens when concurrent threads (or processes) compete for a

shared resource and the resulting final state depends on who gets the resource first
• To avoid race conditions we can use mutexes (mutual exclusion) to protect shared

resources. If a mutex is locked by a thread (critical section), other threads wait for
the mutex to become unlocked

• Deadlock is a situation where a set of threads are blocked because each one is
holding a resource (e.g. a mutex) and waiting for another resource acquired by
some other thread

• Helgrind is a Valgrind tool for detecting synchronization errors (such as deadlocks or
race conditions) in concurrent C programs

Systems Architecture - 9. Concurrency in C 53

	Systems Architecture
	Table of contents
	1. Introduction
	Table of contents
	2. Concurrency basics
	2. Concurrency basics
	2. Concurrency basics
	2. Concurrency basics
	Table of contents
	3. Processes vs threads - Processes
	3. Processes vs threads - Threads
	3. Processes vs threads - Comparison
	3. Processes vs threads - Multitasking
	Table of contents
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	4. POSIX threads
	Table of contents
	5. Race conditions
	5. Race conditions
	5. Race conditions
	5. Race conditions
	5. Race conditions
	Table of contents
	6. Mutexes
	6. Mutexes
	6. Mutexes
	6. Mutexes
	6. Mutexes
	Table of contents
	7. Deadlocks
	7. Deadlocks
	7. Deadlocks
	Table of contents
	8. Helgrind
	8. Helgrind
	8. Helgrind
	8. Helgrind
	8. Helgrind
	8. Helgrind
	8. Helgrind
	8. Helgrind
	Table of contents
	9. Takeaways

