
Systems Architecture
8. Working with files in C

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. Text files
3. Binary files
4. Takeaways

Systems Architecture - 8. Working with files in C 2

1. Introduction
• A file represents a sequence of bytes on the disk where a group

of related data is persistently stored
• In C programming, we handle two types of files:

- Text files:
• Sequence of characters (letters, numbers, and other symbols) encoded using a

given character set (e.g. ASCII, UTF-8)
• Lines are separated by the newline character (this character is \n in UNIX-like

systems but \r\n in Windows)
• Human readable (we can use a text editor for creation and modification)

- Binary files:
• Sequence of bytes (binary data) typically interpreted as something different

than text
• Computer readable (we need a computer program to interpret the data in the

file)

Systems Architecture - 8. Working with files in C 3

Table of contents
1. Introduction
2. Text files
3. Binary files
4. Takeaways

Systems Architecture - 8. Working with files in C 4

2. Text files
• The typical procedure to read/write text files in C is:

1. Declare a pointer to the file (type FILE):

2. Open the file using fopen:

3. Perform read or write operations
4. Close the file using fclose:

Systems Architecture - 8. Working with files in C 5

FILE *fp;

FILE *fopen(const char *filename, const char *mode);

int fclose(FILE *fp);

2. Text files
• The following table summarizes the access modes for text files:

Systems Architecture - 8. Working with files in C 6

Mode Description Behavior

r Open for reading If the file does not exist, fopen() returns NULL

w Open for writing If the file exists, its contents are overwritten.
If the file does not exist, it is created

a Open for append (new data is
added to the end of the file) If the file does not exist, it is created

r+ Open for both reading and
writing If the file does not exist, fopen() returns NULL

w+ Open for both reading and
writing

If the file exists, its contents are overwritten.
If the file does not exist, it is created

a+ Open for both reading and
appending If the file does not exist, it is created

2. Text files
• The following functions are used to read and write text from/to files:

Systems Architecture - 8. Working with files in C 7

Prototype Description

int fgetc(FILE *fp); Reads and returns a single character at a time from a file. It returns EOF
(end of file) when there are no more characters

char *fgets(char *buf,
int max, FILE *fp);

Reads a line from the file. It stops when either (n-1) characters are read,
the newline character is read, or EOF is reached

int fscanf(FILE *fp,
const char *format,...); Reads formatted input from a file (same as scanf but from a file)

int fputc(int ch, FILE
*fp); Writes a single character into a file

int fputs(const char
*str, FILE *fp); Writes a text line into a file

int fprintf(FILE *fp,
const char *format, ...); Write formatted text from a file (same as printf but from a file)

read

write

2. Text files
• Basic example for

writing a text file:

Systems Architecture - 8. Working with files in C 8

#include <stdio.h>
#include <stdlib.h>

int main() {
FILE *fp = fopen("file.txt", "w");
if (fp == NULL) {

printf("Error opening file\n");
exit(1);

}

// Write a line to the file
fprintf(fp, "I am writing into the file\n");

int i;
printf("Enter integer: ");
scanf("%d", &i);

// Write another line to the file
fprintf(fp, "You entered: %d\n", i);

fclose(fp);

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/io/file_write.c

2. Text files
• Basic example for

reading a text file line
by line:

Systems Architecture - 8. Working with files in C 9

#include <stdio.h>
#include <stdlib.h>

int main() {
FILE *fp = fopen("file.txt", "r");
if (fp == NULL) {

printf("Error opening file\n");
exit(1);

}

int buf_size = 255;
char buffer[buf_size];
while (fgets(buffer, buf_size, fp) != NULL) {

printf("%s", buffer);
}

fclose(fp);

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/io/file_read_1.c

Table of contents
1. Introduction
2. Text files
3. Binary files
4. Takeaways

Systems Architecture - 8. Working with files in C 10

3. Binary files
• In C programming, we use can binary files to persist any kind

of data type in the C program
• The procedure to read/write binary files in C is the same

than we used in text finales, but using different functions for
reading/writing:

1. Declare a pointer to the file (type FILE)
2. Open the file using fopen (using an access mode for binary files)
3. Perform read (fread) or write (fwrite) operations
4. Close the file using fclose

Systems Architecture - 8. Working with files in C 11

3. Binary files
• The following table summarizes the access mode for binary files:

Systems Architecture - 8. Working with files in C 12

Mode Description Behavior

rb Open for reading If the file does not exist, fopen() returns NULL

wb Open for writing If the file exists, its contents are overwritten.
If the file does not exist, it is created

ab Open for append (new data is
added to the end of the file) If the file does not exist, it is created

rb+ Open for both reading and
writing If the file does not exist, fopen() returns NULL

wb+ Open for both reading and
writing

If the file exists, its contents are overwritten.
If the file does not exist, it is created

ab+ Open for both reading and
appending If the file does not exist, it is created

3. Binary files
• The following functions are used to read and write from/to

binary files:

Systems Architecture - 8. Working with files in C 13

Prototype Description

size_t fwrite(const void *ptr,
size_t size, size_t count, FILE

*fp);

Writes an array of count elements in fp, each one with a size of
size bytes, from the block of memory pointed by ptr. The file

position advances the total number of bytes written. It returns the
total number of elements successfully written

size_t fread(void *ptr, size_t
size, size_t count, FILE *fp);

Reads an array of count elements, each one with a size of size
bytes from fp, and stores them in the block of memory specified by
ptr. The file position advances the total amount of bytes read. It
returns the total number of elements successfully read (which is

different than count when EOF is reached)

The file position of a file describes where in the file the stream is
currently reading or writing. This file position is represented as an

integer which counts the number of bytes from the beginning of the file

3. Binary files
• Basic IO examples with binary files (write 1):

Systems Architecture - 8. Working with files in C 14

#include <stdio.h>

int main() {
FILE *fp = fopen("file1.bin", "wb");
if (!fp) {

perror("An error occurred opening the file");
return 1;

}

int i = 100;
float f = 20.5;

fwrite(&i, sizeof(int), 1, fp);
fwrite(&f, sizeof(float), 1, fp);

fclose(fp);

return 0;
}

The perror function prints error
messages to the stderr stream based on

the error state in the errno (i.e., a standard
global variable that stores an error code

occurred during any function call)

We can use the command
hexdump to visualice the

hexacimal content

$ hexdump -C file1.bin
00000000 64 00 00 00 00 00 a4 41 |d......A|
00000008

https://github.com/bonigarcia/c-programming/blob/master/io-bin/create_bin_file_1.c

3. Binary files
• Basic IO examples with binary files (read 1):

Systems Architecture - 8. Working with files in C 15

#include <string.h>
#include <stdio.h>

int main() {
FILE *fp = fopen("file1.bin", "rb");
if (!fp) {

perror("An error occurred opening the file");
return 1;

}

int i;
fread(&i, sizeof(i), 1, fp);
float f;
fread(&f, sizeof(f), 1, fp);

printf("The content of the binary file is:\n");
printf("%d\n", i);
printf("%f\n", f);

fclose(fp);

return 0;
}

The content of the binary file is:
100
20.500000

https://github.com/bonigarcia/c-programming/blob/master/io-bin/read_bin_file_1.c

3. Binary files
• Basic IO examples with binary files (II):

Systems Architecture - 8. Working with files in C 16

#include <stdio.h>
#include <stdlib.h>

#define MAX_STR 255
#define SIZE 10

int main() {
char content[10][MAX_STR];

for (int i = 0; i < SIZE; i++) {
sprintf(content[i], "This is line %d", i + 1);

}

FILE *fp = fopen("file2.bin", "wb");
if (!fp) {

perror("An error occurred opening the file");
return 1;

}
fwrite(content, MAX_STR, SIZE, fp);
fclose(fp);

return 0;
}

#include <stdio.h>
#include <stdlib.h>

#define MAX_STR 255

int main() {
FILE *fp = fopen("file2.bin", "rb");
if (!fp) {

perror("An error occurred opening the file");
return 1;

}

printf("The content of the binary file is:\n");
char record[MAX_STR];
while (fread(&record, sizeof(record), 1, fp) == 1) {

puts(record);
}

fclose(fp);

return 0;
}

read
write

https://github.com/bonigarcia/c-programming/tree/master/io-bin

3. Binary files
• Basic IO examples with binary files (III):

Systems Architecture - 8. Working with files in C 17

#include <stdio.h>
#include <stdlib.h>

#define MAX_STR 255
#define SIZE 10

struct data {
char str[MAX_STR];
int integer;

};

int main() {
struct data *content = (struct data*) calloc(SIZE, sizeof(struct data));

for (int i = 0; i < SIZE; i++) {
sprintf(content[i].str, "This is line %d", i + 1);
content[i].integer = i + i;

}
FILE *fp = fopen("file3.bin", "wb");
if (!fp) {

perror("An error occurred opening the file");
return 1;

}
fwrite(content, sizeof(struct data), SIZE, fp);
fclose(fp);
free(content);
return 0;

}

#include <stdio.h>
#include <stdlib.h>

#define MAX_STR 255

struct data {
char str[MAX_STR];
int integer;

};

int main() {
FILE *fp = fopen("file3.bin", "rb");
if (!fp) {

perror("An error occurred opening the file");
return 1;

}

printf("The content of the binary file is:\n");
struct data record;
while (fread(&record, sizeof(struct data), 1, fp) == 1) {

printf("String: %s -- Integer: %d\n", record.str, record.integer);
}

fclose(fp);

return 0;
}

readwrite

https://github.com/bonigarcia/c-programming/tree/master/io-bin

3. Binary files
• The following functions are used to manipulate the file

position associated with a file stream:

Systems Architecture - 8. Working with files in C 18

Prototype Description

int fseek(FILE *fp,
long int offset,

int origin);

Changes the file position associated with fp.
For binary files, the new position is defined by adding offset to a reference position

specified by origin.
For text files, offset shall either be zero or a value returned by a previous call to

ftell, and origin shall necessarily be SEEK_SET.
The parameter origin specifies the position used as a reference for the offset:

- SEEK_SET: Starts the offset from the beginning of the file.
- SEEK_END: Starts the offset from the end of the file.

- SEEK_CUR: Starts the offset from the current location of the cursor in the file.

long int ftell(FILE
*fp);

Returns the current file position.
For binary streams, this is the number of bytes from the beginning of the file.

void rewind(FILE
*fp); Sets the file position associated with an stream to the beginning of the file.

3. Binary files
• Basic IO examples with binary files (using fseek):

Systems Architecture - 8. Working with files in C 19

#include <stdio.h>
#include <stdlib.h>

#define MAX_STR 255

int main() {
FILE *fp = fopen("file2.bin", "rb");
if (!fp) {

perror("An error occurred opening the file");
return 1;

}

printf("The content of the binary file (showing only odd values) is:\n");
char record[MAX_STR];
while (fread(&record, sizeof(record), 1, fp) == 1) {

puts(record);
fseek(fp, sizeof(record), SEEK_CUR);

}

fclose(fp);

return 0;
}

The content of the binary file (showing only odd values) is:
This is line 1
This is line 3
This is line 5
This is line 7
This is line 9

https://github.com/bonigarcia/c-programming/blob/master/io-bin/read_bin_file_2_fseek.c

3. Binary files
• Basic IO examples with binary files (using ftell):

Systems Architecture - 8. Working with files in C 20

#include <stdio.h>
#include <stdlib.h>

#define MAX_STR 255

int main() {
FILE *fp = fopen("file2.bin", "rb");
if (!fp) {

perror("An error occurred opening the file");
return 1;

}

printf("The content of the binary file is:\n");
char record[MAX_STR];
int file_pos = ftell(fp);
printf("[file position at the beginning is: %d]\n", file_pos);
while (fread(&record, sizeof(record), 1, fp) == 1) {

file_pos = ftell(fp);
printf("%s [file position is: %d]\n", record, file_pos);

}
printf("[file position at the end is: %d]\n", file_pos);

fclose(fp);
return 0;

}

The content of the binary file is:
[file position at the beginning is: 0]
This is line 1 [file position is: 255]
This is line 2 [file position is: 510]
This is line 3 [file position is: 765]
This is line 4 [file position is: 1020]
This is line 5 [file position is: 1275]
This is line 6 [file position is: 1530]
This is line 7 [file position is: 1785]
This is line 8 [file position is: 2040]
This is line 9 [file position is: 2295]
This is line 10 [file position is: 2550]
[file position at the end is: 2550]

https://github.com/bonigarcia/c-programming/blob/master/io-bin/read_bin_file_2_ftell.c

Table of contents
1. Introduction
2. Text files
3. Binary files
4. Takeaways

Systems Architecture - 8. Working with files in C 21

4. Takeaways
• A file represents a sequence of bytes on the disk where a

group of related data is persistently stored
• In C programming, we typically handle two types of files: text

(sequence of characters) and binary (sequence of bytes) files
• The typical procedure to read/write files in C is:

1. Declare a pointer to the file (type FILE)
2. Open the file using fopen
3. Perform read/write operations:

• Functions for text files: fprintf, fscanf, …
• Functions for binary files: fwrite, fread

4. Close the file using fclose

Systems Architecture - 8. Working with files in C 22

	Systems Architecture
	Table of contents
	1. Introduction
	Table of contents
	2. Text files
	2. Text files
	2. Text files
	2. Text files
	2. Text files
	Table of contents
	3. Binary files
	3. Binary files
	3. Binary files
	3. Binary files
	3. Binary files
	3. Binary files
	3. Binary files
	3. Binary files
	3. Binary files
	3. Binary files
	Table of contents
	4. Takeaways

