
Systems Architecture
6. Dynamic memory in C

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. Memory layout in C
3. Dynamic memory functions
4. Linked lists
5. Takeaways

Systems Architecture - 6. Dynamic memory in C 2

1. Introduction
• The data managed by a process (i.e., a program in execution) is stored

in the primary memory (RAM) of the computer running it and
handled through variables in its source code

• In programming, memory management is the process of allocation
(i.e., assign memory) and de-allocation (i.e., release memory)

• In some programming languages, such as Java or Python, memory
management is automatic and transparent for the programmer
− These programming languages use a garbage collector mechanism for

releasing memory automaticaly

• In other programming languages, such as C, dynamic memory
management is explicit, and it requires specific function to allocate
(malloc, calloc, realloc) and de-allocate memory (free)

Systems Architecture - 6. Dynamic memory in C 3

Table of contents
1. Introduction
2. Memory layout in C

- The stack segment
- The heap segment
- The stack vs. the heap

3. Dynamic memory functions
4. Linked lists
5. Takeaways

Systems Architecture - 6. Dynamic memory in C 4

2. Memory layout in C

Systems Architecture - 6. Dynamic memory in C 5

• C programs handle different memory segments, namely:
1. The code segment (sometimes called “text”), which stores

the machine code to be executed
2. The read-only data segments (or “rodata”) which contains

constants and string literals (declared with *)
3. The initialized data segment (sometimes called simply

“data”), which contains the global variables and static
variables that are initialized by the programmer

4. The uninitialized data segment (called BSS for historical
reasons -comes from block started by symbol-), which
contains the global variables and static variables that are
no initialized by the programmer
− Data in this segment is initialized by the compiler to arithmetic 0

5. The stack segment, which stores local variables during the
execution of the functions

6. The heap segment, which stores dynamically allocated
memory

data

heap

stack

Low addresses

High addresses

text

rodata

bss

2. Memory layout in C
• The following program shows an example of different variables stored

in different memory segments:

Systems Architecture - 6. Dynamic memory in C 6

#include <stdio.h>

int global1 = 10; // Initialized global variable (data)

int global2; // Uninitialized global variable (BSS)

int main() {
const int number = 5; // Constant variable (rodata)

static int min; // Uninitialized static variable (BSS)

static int max = 20; // Initialized static variable (data)

char *msg1 = "Hello world"; // Immutable string literal (rodata)

char msg2[] = "Hello world"; // Mutable string literal (stack)

msg2[0] = 'h';

printf("%s\n", msg2);

return 0;
}

What happens if we try to
modify msg1[0]?

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/memory_segments.c

2. Memory layout in C - The stack segment
• The values stored in the stack segment come from local variables (and

function arguments)
• The stack is a LIFO (Last-In-First-Out) data structure, which is a linear

data structure with two possible operations:
− Push, which adds an element at the end of the collection
− Pop, which removes the most recently added

• All data stored on the stack must have a known, fixed size
• Data with an unknown size at compile time or a size that might

change must be stored on the heap instead

Systems Architecture - 6. Dynamic memory in C 7

We can think in a stack like a pile of
plates: new plates are placed on top, and
the last plate is the first one we take out Source:

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

2. Memory layout in C - The heap segment
• The heap is a large pool of memory (not allocated in contiguous order)

that can be used dynamically
• Unlike the stack, heap memory is allocated explicitly by programmers

and it won’t be deallocated until it is explicitly freed
• To manage the heap, we need to use pointers and specific C functions:

− Allocation: malloc, calloc, realloc
− De-allocation: free

• The heap requires pointers to access it
• Variables created on the heap are accessible by any function in a C

program (heap variables are essentially global in scope)

Systems Architecture - 6. Dynamic memory in C 8

2. Memory layout in C - The stack vs. the heap
• Some key differences between the stack and the heap are:

Systems Architecture - 6. Dynamic memory in C 9

Stack Heap

Structure LIFO Free store (not contiguous order)

Memory allocation Automatically done (on function start) Manually done by the programmer (malloc,
calloc, realloc)

Memory deallocation Automatically done (on function exit) Manually done by the programmer (free)

Scope Local (access only in the scope) Global (access with pointers)

Limit of space size Dependent on operating system. In
Linux, we can check it using a shell
command: ulimit –s

No restrictions, other than the physical size
of the computer memory

Resize Variables cannot be resized Variables can be resized (dynamic memory)

Access time Faster Slower (compared to stack)

Possible problems Shortage of memory (stack overflow) Memory leaks (memory allocated but not
deallocated)

Table of contents
1. Introduction
2. Memory layout in C
3. Dynamic memory functions

- malloc
- free
- calloc
- realloc
- Out of scope allocation

4. Memory management problems
5. Valgrind
6. Linked lists
7. Takeaways

Systems Architecture - 6. Dynamic memory in C 10

3. Dynamic memory functions
• Up to now, we have used the stack and data segments in our C

programs
− Variables are allocated automatically as either permanent or temporary

variables

• With dynamic memory we will use the heap
− For that we need pointers and allocation/de-allocation functions

• With dynamic memory we can create data structures that can grow or
shrink as needed
− For instance: linked lists or trees

Systems Architecture - 6. Dynamic memory in C 11

3. Dynamic memory functions - malloc
• The C library function malloc (short for memory allocation) allocates

a number of consecutive bytes in the heap and returns a pointer to
the first byte
− This function (and the rest of dynamic memory) is declared in stdlib.h
− The prototype of malloc is as follows:

Systems Architecture - 6. Dynamic memory in C 12

void *malloc(size_t size);

Size for the
memory block to
be allocated, in

bytes

It returns a pointer to the
newly allocated memory, or
NULL if the reallocation fails

3. Dynamic memory functions - malloc
• Since malloc returns a generic pointer (i.e., void*), although not

mandatory, it is a common practice to cast (i.e., explicitly inform the
compiler the type of a variable) the resulting pointer:

• For instance:

Systems Architecture - 6. Dynamic memory in C 13

T ptr = (T*) malloc(size);

See discussion about it in:
https://stackoverflow.com/questions/605845/do-i-cast-the-result-of-malloc

int *ptr = (int*) malloc(sizeof(int));

https://stackoverflow.com/questions/605845/do-i-cast-the-result-of-malloc

3. Dynamic memory functions - malloc

Systems Architecture - 6. Dynamic memory in C 14

#include <stdio.h>
#include <stdlib.h>

#define SIZE 5

int main() {
int *ptr = (int*) malloc(sizeof(int));

if (ptr == NULL) {
fputs("Dynamic memory cannot be allocated\n", stderr);
exit(1);

}

// FIXME: Memory allocated is not released!

return 0;
}

stack (main)

ptr

heap

Is there any problem in
this program?

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/malloc_1.c

3. Dynamic memory functions - malloc

Systems Architecture - 6. Dynamic memory in C 15

#include <stdio.h>
#include <stdlib.h>

#define SIZE 5

int main() {
int *ptr = (int*) malloc(SIZE * sizeof(int));

if (ptr == NULL) {
fprintf(stderr, "Dynamic memory cannot be allocated.\n");
exit(1);

}

// FIXME: Memory allocated is not released!

return 0;
}

stack (main)

ptr

heap

In this example we
allocate memory for a

“dynamic array”

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/malloc_2.c

3. Dynamic memory functions - free
• The C library function free deallocates the memory previously

allocated by a call to malloc, calloc, or realloc
− Like the other functions related to dynamic memory, free is declared in
stdlib.h

− The prototype of free is as follows:

• We need to invoke free when we do not need anymore the dynamic
memory previously allocated (with malloc, calloc, or realloc)
− Otherwise, we have a memory leak in our program

Systems Architecture - 6. Dynamic memory in C 16

void free(void *ptr);

Pointer to a memory
block to be deallocated

3. Dynamic memory functions - free

Systems Architecture - 6. Dynamic memory in C 17

#include <stdio.h>
#include <stdlib.h>

#define SIZE 5

int main() {
int *ptr = (int*) malloc(SIZE * sizeof(int));

for (int i = 0; i < SIZE; i++) {
*(ptr + i) = i; // alternatively: ptr[i] = i;

}

for (int i = 0; i < SIZE; i++) {
printf("The address %p contains %d\n", (ptr + i), *(ptr + i));

}

free(ptr);

return 0;
} The address 0x55f6acb0f2a0 contains 0

The address 0x55f6acb0f2a4 contains 1
The address 0x55f6acb0f2a8 contains 2
The address 0x55f6acb0f2ac contains 3
The address 0x55f6acb0f2b0 contains 4

stack (main)

ptr

0 1 2 3 4

heap

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/malloc_3.c

3. Dynamic memory functions - free

Systems Architecture - 6. Dynamic memory in C 18

#include <stdio.h>
#include <stdlib.h>

struct cell {
int a;
int b;

};

int main() {
struct cell *ptr = (struct cell*) malloc(sizeof(struct cell));

ptr->a = 10;
ptr->b = 20;

printf("The address %p contains %d and then %d\n",
ptr, ptr->a, ptr->b);

free(ptr);
}

The address 0x5609b97d52a0 contains 10 and then 20

stack (main)

ptr

10 20

heap

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/malloc_4.c

3. Dynamic memory functions - calloc
• The C library function calloc (short for contiguous allocation)

allocates a number of consecutive bytes in the heap and returns a
pointer to the first byte
− Like the other functions related to dynamic memory, calloc is declared in
stdlib.h

− It initializes the allocated memory to zero
− The prototype of calloc is as follows:

Systems Architecture - 6. Dynamic memory in C 19

void *calloc(size_t nitems, size_t size);

Number of
elements to be

allocated

Size of each
element, in bytes

It returns a pointer to the
allocated memory, or NULL

if the allocation fails

3. Dynamic memory functions - calloc

Systems Architecture - 6. Dynamic memory in C 20

#include <stdio.h>
#include <stdlib.h>

#define SIZE 5

int main() {
int *ptr = (int*) calloc(SIZE, sizeof(int));

for (int i = 0; i < SIZE; i++) {
ptr[i] = i;

}

for (int i = 0; i < SIZE; i++) {
printf("The address %p contains %d\n", (ptr + i), ptr[i]);

}

free(ptr);

return 0;
}

The address 0x5601eb4172a0 contains 0
The address 0x5601eb4172a4 contains 1
The address 0x5601eb4172a8 contains 2
The address 0x5601eb4172ac contains 3
The address 0x5601eb4172b0 contains 4

stack (main)

ptr

0 1 2 3 4

heap

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/calloc_1.c

3. Dynamic memory functions - calloc
• There key differences between malloc and calloc are:

Systems Architecture - 6. Dynamic memory in C 21

malloc calloc

It creates one block of memory of a
fixed size

It assigns more than one block of memory to
a single variable

It has one argument:
• The total size (in bytes) of memory

to be allocated

It has two arguments:
• The number of items to be allocated
• The size (in bytes) of each element

It doesn’t initialize the allocated
memory

It initializes the allocated memory to zero

It is faster than calloc It is slower than malloc

3. Dynamic memory functions - realloc
• The C library function realloc (short for reallocation) resizes the

memory block pointed to by a pointer that was previously allocated
with malloc or calloc
− Like the other functions related to dynamic memory, realloc is declared in
stdlib.h

• The prototype of realloc is as follows:

Systems Architecture - 6. Dynamic memory in C 22

void *realloc (void *ptr, size_t size);

Pointer to a
memory block to

be reallocated

New size for the
memory block, in

bytes

It returns a pointer to the
newly allocated memory, or
NULL if the reallocation fails

#include <stdio.h>
#include <stdlib.h>

#define SIZE_1 5
#define SIZE_2 10

void fill_array(int *array, int init, int end) {
for (int i = init; i < end; i++) {

array[i] = i;
}

}

void display_array(int *array, int init, int end) {
for (int i = init; i < end; i++) {

printf("array[%d]=%d\n", i, array[i]);
}
printf("\n");

}

int main() {
int *ptr = (int*) calloc(SIZE_1, sizeof(int));
printf("The address of ptr is %p\n", ptr);

fill_array(ptr, 0, SIZE_1);
display_array(ptr, 0, SIZE_1);

ptr = (int*) realloc(ptr, SIZE_2 * sizeof(int));
printf("The address of ptr is %p\n", ptr);

fill_array(ptr, SIZE_1, SIZE_2);
display_array(ptr, 0, SIZE_2);

free(ptr);
return 0;

}

3. Dynamic memory functions - realloc

Systems Architecture - 6. Dynamic memory in C 23

The address of ptr is 0x560b3f37e2a0

stack (main)

ptr

heap

0 0 0 0 0

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/realloc_1.c

#include <stdio.h>
#include <stdlib.h>

#define SIZE_1 5
#define SIZE_2 10

void fill_array(int *array, int init, int end) {
for (int i = init; i < end; i++) {

array[i] = i;
}

}

void display_array(int *array, int init, int end) {
for (int i = init; i < end; i++) {

printf("array[%d]=%d\n", i, array[i]);
}
printf("\n");

}

int main() {
int *ptr = (int*) calloc(SIZE_1, sizeof(int));
printf("The address of ptr is %p\n", ptr);

fill_array(ptr, 0, SIZE_1);
display_array(ptr, 0, SIZE_1);

ptr = (int*) realloc(ptr, SIZE_2 * sizeof(int));
printf("The address of ptr is %p\n", ptr);

fill_array(ptr, SIZE_1, SIZE_2);
display_array(ptr, 0, SIZE_2);

free(ptr);
return 0;

}

3. Dynamic memory functions - realloc

Systems Architecture - 6. Dynamic memory in C 24

array[0]=0
array[1]=1
array[2]=2
array[3]=3
array[4]=4

stack (main)

ptr

heap

0 1 2 3 4

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/realloc_1.c

#include <stdio.h>
#include <stdlib.h>

#define SIZE_1 5
#define SIZE_2 10

void fill_array(int *array, int init, int end) {
for (int i = init; i < end; i++) {

array[i] = i;
}

}

void display_array(int *array, int init, int end) {
for (int i = init; i < end; i++) {

printf("array[%d]=%d\n", i, array[i]);
}
printf("\n");

}

int main() {
int *ptr = (int*) calloc(SIZE_1, sizeof(int));
printf("The address of ptr is %p\n", ptr);

fill_array(ptr, 0, SIZE_1);
display_array(ptr, 0, SIZE_1);

ptr = (int*) realloc(ptr, SIZE_2 * sizeof(int));
printf("The address of ptr is %p\n", ptr);

fill_array(ptr, SIZE_1, SIZE_2);
display_array(ptr, 0, SIZE_2);

free(ptr);
return 0;

}

3. Dynamic memory functions - realloc

Systems Architecture - 6. Dynamic memory in C 25

stack (main)

ptr

0 1 2 3 4

heap

0 1 2 3 4

Internally, realloc allocates memory for the
new block, copy the data from the old block

over, free the old block and return a pointer to
the beginning of the new block

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/realloc_1.c

#include <stdio.h>
#include <stdlib.h>

#define SIZE_1 5
#define SIZE_2 10

void fill_array(int *array, int init, int end) {
for (int i = init; i < end; i++) {

array[i] = i;
}

}

void display_array(int *array, int init, int end) {
for (int i = init; i < end; i++) {

printf("array[%d]=%d\n", i, array[i]);
}
printf("\n");

}

int main() {
int *ptr = (int*) calloc(SIZE_1, sizeof(int));
printf("The address of ptr is %p\n", ptr);

fill_array(ptr, 0, SIZE_1);
display_array(ptr, 0, SIZE_1);

ptr = (int*) realloc(ptr, SIZE_2 * sizeof(int));
printf("The address of ptr is %p\n", ptr);

fill_array(ptr, SIZE_1, SIZE_2);
display_array(ptr, 0, SIZE_2);

free(ptr);
return 0;

}

3. Dynamic memory functions - realloc

Systems Architecture - 6. Dynamic memory in C 26

stack (main)

ptr

heap

0 1 2 3 4

The address of ptr is 0x5628ba8d76d0

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/realloc_1.c

#include <stdio.h>
#include <stdlib.h>

#define SIZE_1 5
#define SIZE_2 10

void fill_array(int *array, int init, int end) {
for (int i = init; i < end; i++) {

array[i] = i;
}

}

void display_array(int *array, int init, int end) {
for (int i = init; i < end; i++) {

printf("array[%d]=%d\n", i, array[i]);
}
printf("\n");

}

int main() {
int *ptr = (int*) calloc(SIZE_1, sizeof(int));
printf("The address of ptr is %p\n", ptr);

fill_array(ptr, 0, SIZE_1);
display_array(ptr, 0, SIZE_1);

ptr = (int*) realloc(ptr, SIZE_2 * sizeof(int));
printf("The address of ptr is %p\n", ptr);

fill_array(ptr, SIZE_1, SIZE_2);
display_array(ptr, 0, SIZE_2);

free(ptr);
return 0;

}

3. Dynamic memory functions - realloc

Systems Architecture - 6. Dynamic memory in C 27

stack (main)

ptr

heap

0 1 2 3 4 5 6 7 8 9

array[0]=0
array[1]=1
...
array[8]=8
array[9]=9

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/realloc_1.c

3. Dynamic memory functions - Out of scope allocation
• Let’s consider the following example:

Systems Architecture - 6. Dynamic memory in C 28

#include <stdio.h>
#include <stdlib.h>

int main() {
int *ptr;

ptr = (int*) malloc(sizeof(int));

*ptr = 42;
printf("*ptr=%d\n", *ptr);

free(ptr);

return 0;
}

How to do this memory allocation
but in a different function?

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/out-of-scope-allocation_0.c

3. Dynamic memory functions - Out of scope allocation

Systems Architecture - 6. Dynamic memory in C 29

#include <stdio.h>
#include <stdlib.h>

void allocate(int *ptr) {
ptr = (int*) malloc(sizeof(int));

}

int main() {
int *ptr;
allocate(ptr);

*ptr = 42;
printf("*ptr=%d\n", *ptr);

free(ptr);

return 0;
}

Is this a valid solution?

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/out-of-scope-allocation_1.c

3. Dynamic memory functions - Out of scope allocation

Systems Architecture - 6. Dynamic memory in C 30

#include <stdio.h>
#include <stdlib.h>

void allocate(int *ptr) {
ptr = (int*) malloc(sizeof(int));

}

int main() {
int *ptr;
allocate(ptr);

*ptr = 42;
printf("*ptr=%d\n", *ptr);

free(ptr);

return 0;
}

stack (main)

ptr

heap

stack (allocate)

ptr

Is this a valid solution?

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/out-of-scope-allocation_1.c

3. Dynamic memory functions - Out of scope allocation

Systems Architecture - 6. Dynamic memory in C 31

#include <stdio.h>
#include <stdlib.h>

void allocate(int **ptr) {
ptr = (int) malloc(sizeof(int));

}

int main() {
int *ptr;
allocate(&ptr);

*ptr = 42;
printf("*ptr=%d\n", *ptr);

free(ptr);

return 0;
}

Instead, we need to use a
double pointer

stack (main)

ptr

heap

stack (allocate)

ptr

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/out-of-scope-allocation_2.c

3. Dynamic memory functions - Out of scope allocation

Systems Architecture - 6. Dynamic memory in C 32

#include <stdio.h>
#include <stdlib.h>

int* allocate() {
return (int*) malloc(sizeof(int));

}

int main() {
int *ptr = allocate();

*ptr = 42;
printf("*ptr=%d\n", *ptr);

free(ptr);

return 0;
}

Alternatively, we can make the function
return a pointer to the newly allocated

memory block

stack (main)

ptr

heap

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/out-of-scope-allocation_2.c

Table of contents
1. Introduction
2. Memory layout in C
3. Dynamic memory functions

4. Linked lists
5. Takeaways

Systems Architecture - 6. Dynamic memory in C 33

4. Linked lists
• A linked list is a sequence of data structures which are connected

together with links (implemented with pointers in C)

Systems Architecture - 6. Dynamic memory in C 34

head

data next data next data next

NULL

data next

head

data next

NULL

prev data nextprev

NULL

data nextprev

Singly linked
lists

Doubly
linked lists

4. Linked lists
• We use an struct to define the nodes of the link list
• In singly linked list, in addition to some data (an integer in this

example), a pointer to the next element is declared as a member in
the structure

• Then, we use a pointer to the structure to declare the first node of
the linked list (usually called head)

Systems Architecture - 6. Dynamic memory in C 35

/*
* Node definition
*/

typedef struct Node {
int data;
struct Node *next;

} Node;

Node *head = NULL;

To ensure the linked is
empty, we must initialize

its head to NULL

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

4. Linked lists
• Typically, we create nodes using a function, and then, we insert the

node in the linked list (head)
− We need to use malloc to allocate memory for that node:

Systems Architecture - 6. Dynamic memory in C 36

/*
* Create new node (using data as input)
*/

Node* create_node(int data) {
Node *node = (Node*) malloc(sizeof(Node));
node->data = data;
node->next = NULL;

return node;
}

Example of function to
create node knowing its

content (an integer value
in this case)

Example of node creation
with a given value (6 in

this example)

int main() {
Node *head = NULL;

Node *node_6 = create_node(6);

// ...

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

4. Linked lists

Systems Architecture - 6. Dynamic memory in C 37

stack (main)

NULL

head

heap

stack (create_node)

node_6

NULL6

data next

node

stack (main)

NULL

head

heap

node_6

NULL6

data next

Memory snapshot
before the return of

the create_node
function

Memory snapshot
after the return of
the create_node

function

4. Linked lists
• Once we have created a node, there are different strategies to insert

the node in the linked list
− It can be inserted at the beginning, at the end, or somewhere in the middle

• The following function shows an example to insert a node at the
beginning
− We need to use double pointers (since the push function need to change the

original value of head)

Systems Architecture - 6. Dynamic memory in C 38

/*
* Insert Node at the beginning
*/

void push(Node **head_ref, Node *new_node) {
new_node->next = *head_ref;
*head_ref = new_node;

}

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

4. Linked lists
• When calling the push the first time:

Systems Architecture - 6. Dynamic memory in C 39

stack (main)

head

heap

stack (push)

NULL6

data next

Memory snapshot
at the beginning

of the push
function

int main() {
Node *head = NULL;

// Push 6
Node *node_6 = create_node(6);
push(&head, node_6);
printf("Insert 6 at the beginning. Linked list is:");
print_list(head);

// ...

head_ref

new_node

/*
* Insert Node at the beginning
*/

void push(Node **head_ref, Node *new_node) {
new_node->next = *head_ref;
*head_ref = new_node;

}

NULL

node_6

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

4. Linked lists
• When calling the push the first time:

Systems Architecture - 6. Dynamic memory in C 40

stack (main)

head

heap

stack (push)

NULL6

data next
Memory snapshot
at the end of the
push function

int main() {
Node *head = NULL;

// Push 6
Node *node_6 = create_node(6);
push(&head, node_6);
printf("Insert 6 at the beginning. Linked list is:");
print_list(head);

// ...

head_ref

new_node

/*
* Insert Node at the beginning
*/

void push(Node **head_ref, Node *new_node) {
new_node->next = *head_ref;
*head_ref = new_node;

}

node_6

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

4. Linked lists
• We use another function to display the content of our linked list:

Systems Architecture - 6. Dynamic memory in C 41

stack (main)

head

heap

NULL6

data next

int main() {
// ...

printf("Insert 6 at the beginning. Linked list is:");
print_list(head);

// ...

Insert 6 at the beginning. Linked list is: 6

/*
* Display list content in the standard output
*/

void print_list(Node *head) {
while (head != NULL) {

printf(" %d", head->data);
head = head->next;

}
printf("\n");

}

stack (print_list)
head

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

4. Linked lists
• When calling the push the second time:

Systems Architecture - 6. Dynamic memory in C 42

stack (main)

head

heap

NULL6

data next

// Push 7
Node *node_7 = create_node(7);
push(&head, node_7);
printf("Insert 7 at the beginning. Linked list is:");
print_list(head);

// ...

NULL7

data next

node_7

stack (push)

head_ref

new_node

/*
* Insert Node at the beginning
*/

void push(Node **head_ref, Node *new_node) {
new_node->next = *head_ref;
*head_ref = new_node;

}

Memory snapshot at the
beginning of the push

function the second time

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

4. Linked lists
• When calling the push the second time:

Systems Architecture - 6. Dynamic memory in C 43

stack (main)

head

heap

stack (push)

NULL6

data next

// Push 7
Node *node_7 = create_node(7);
push(&head, node_7);
printf("Insert 7 at the beginning. Linked list is:");
print_list(head);

// ...

Insert 7 at the beginning. Linked list is: 7 6

7

data next

/*
* Display list content in the standard output
*/

void print_list(Node *head) {
while (head != NULL) {

printf(" %d", head->data);
head = head->next;

}
printf("\n");

}

Memory snapshot
after calling the
push function the

second time

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

/*
* Delete node by value
*/

void delete_node(Node **head_ref, int key) {
Node *tmp = *head_ref, *prev;

// The node to be deleted is the first position
if (tmp != NULL && tmp->data == key) {

*head_ref = tmp->next;
free(tmp);
return;

}

// If not, we find the matching node (if any)
while (tmp != NULL && tmp->data != key) {

prev = tmp;
tmp = tmp->next;

}

// If not found, nothing is done
if (tmp == NULL) {

return;
}

// If found, the previous node is connected to the next
// and then, the memory of the matching node is released
prev->next = tmp->next;
free(tmp);

}

4. Linked lists

Systems Architecture - 6. Dynamic memory in C 44

• To delete a node, several
cases need to be considered
− If the node to be deleted is at

beginning of the list
− If the node to be deleted is

after the first node
− If the node to be deleted is

not in the list

We need to use to auxiliar
pointers (called tmp and prev in
this example) to keep references

to the node to be found (tmp)
and the previous one (prev)

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

4. Linked lists

Systems Architecture - 6. Dynamic memory in C 45

stack (main)

head

heap

stack (delete_node)

NULL7

data next

1

data next

NULL6

data next

tmp prev

Memory snapshot at the
beginning of the

delete_node function

// Delete 7
delete_node(&head, 7);
printf("Delete node with value 7. Linked list is:");
print_list(head);

7

keyhead_ref

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

4. Linked lists

Systems Architecture - 6. Dynamic memory in C 46

stack (main)

head

heap

stack (delete_node)

NULL7

data next

1

data next

NULL6

data next

tmp prev

Memory snapshot before
the call to free in the
delete_node function

// Delete 7
delete_node(&head, 7);
printf("Delete node with value 7. Linked list is:");
print_list(head);

7

keyhead_ref

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

4. Linked lists
• The following functions show how to insert a node at end and after a

giving position

Systems Architecture - 6. Dynamic memory in C 47

void append(Node **head_ref, Node *new_node) {
// If list is empty, the node is inserted at the beginning
if (*head_ref == NULL) {

*head_ref = new_node;
return;

}

// If list is not empty, we look for the last node
Node *last = *head_ref;
while (last->next != NULL) {

last = last->next;
}

last->next = new_node;
}

/*
* Insert Node after a giving position
*/

void insert_after(Node *prev_node, Node *new_node) {
if (prev_node == NULL) {

printf("The previous node cannot be NULL\n");
return;

}

new_node->next = prev_node->next;
prev_node->next = new_node;

}

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

/*
* Delete list (free memory)
*/

void clear_list(Node **head_ref) {
Node *current = *head_ref;
Node *next;

while (current != NULL) {
next = current->next;
free(current);
current = next;

}

*head_ref = NULL;
}

4. Linked lists

Systems Architecture - 6. Dynamic memory in C 48

• We need to clear all the allocated memory for the linked list before the
program exit

https://github.com/bonigarcia/c-programming/blob/master/dynamic_mem/linked_list.c

Table of contents
1. Introduction
2. Memory layout in C
3. Dynamic memory functions
4. Linked lists

5. Takeaways

Systems Architecture - 6. Dynamic memory in C 49

5. Takeaways
• There are four memory segments for a C program: code (which stores

the machine code to be executed), data (which stores global variables,
static variables, constants, and string literals), stack (which stores local
variables during the execution of the functions) and heap (which stores
dynamically allocated memory)

• Dynamic memory management is explicit in C, and it requires the use
of pointers and specific function to allocate (malloc, calloc,
realloc) and de-allocate (free) memory

• A linked list is a sequence of data structures, which are connected
together with links (implemented with pointers in C)

Systems Architecture - 6. Dynamic memory in C 50

	Systems Architecture
	Table of contents
	1. Introduction
	Table of contents
	2. Memory layout in C
	2. Memory layout in C
	2. Memory layout in C - The stack segment
	2. Memory layout in C - The heap segment
	2. Memory layout in C - The stack vs. the heap
	Table of contents
	3. Dynamic memory functions
	3. Dynamic memory functions - malloc
	3. Dynamic memory functions - malloc
	3. Dynamic memory functions - malloc
	3. Dynamic memory functions - malloc
	3. Dynamic memory functions - free
	3. Dynamic memory functions - free
	3. Dynamic memory functions - free
	3. Dynamic memory functions - calloc
	3. Dynamic memory functions - calloc
	3. Dynamic memory functions - calloc
	3. Dynamic memory functions - realloc
	3. Dynamic memory functions - realloc
	3. Dynamic memory functions - realloc
	3. Dynamic memory functions - realloc
	3. Dynamic memory functions - realloc
	3. Dynamic memory functions - realloc
	3. Dynamic memory functions - Out of scope allocation
	3. Dynamic memory functions - Out of scope allocation
	3. Dynamic memory functions - Out of scope allocation
	3. Dynamic memory functions - Out of scope allocation
	3. Dynamic memory functions - Out of scope allocation
	Table of contents
	4. Linked lists
	4. Linked lists
	4. Linked lists
	4. Linked lists
	4. Linked lists
	4. Linked lists
	4. Linked lists
	4. Linked lists
	4. Linked lists
	4. Linked lists
	4. Linked lists
	4. Linked lists
	4. Linked lists
	4. Linked lists
	4. Linked lists
	Table of contents
	5. Takeaways

