
Systems Architecture
5. Pointers in C

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. What are pointers?
3. Passing arguments by value and by reference
4. Pointers and arrays
5. Pointers and strings
6. Pointers and structs
7. Function pointers
8. NULL pointer
9. Double pointers
10. Program arguments
11. Takeaways

Systems Architecture - 5. Pointers in C 2

1. Introduction
• As we know, C is general purpose programming language often

classified as high-level programming language, since it provides
abstractions of the details of the computer using elements close to a
natural language

• Nevertheless, C is sometimes called a middle-level programming
language, since it also provides low-level characteristics (related to
memory management)

• This low-level memory management is done through pointers, which
is one the most powerful features of the C, but at the same time, it
can be error-prone
− The incorrect manipulation of memory in C programs leads to the well-known

“segmentation fault” problem

Systems Architecture - 5. Pointers in C 3

Table of contents
1. Introduction
2. What are pointers?
3. Passing arguments by value and by reference
4. Pointers and arrays
5. Pointers and strings
6. Pointers and structs
7. Function pointers
8. NULL pointer
9. Double pointers
10. Program arguments
11. Takeaways

Systems Architecture - 5. Pointers in C 4

2. What are pointers?
• Each variable in a C program is stored in the main memory of the

computer executing it
• A pointer in C is a variable that stores a memory address
• There are two operators in C to handle pointers:

Systems Architecture - 5. Pointers in C 5

Operator Description Example

& Reference operator (to get the memory address of a variable) &b

* Dereference operator (to declare pointer or get the value of a given pointer) *b

2. What are pointers?
• Pointers, like any other variable in C, need to be declared using a

given type and variable name
• The difference from regular variables is that we use the operator *

before the variable name:

• For instance:

Systems Architecture - 5. Pointers in C 6

int *ip; // pointer to an integer
double *dp; // pointer to a double
float *fp; // pointer to a float
char *cp; // pointer to a character

type *pointer_name;

2. What are pointers?
• Consider the following example:

Systems Architecture - 5. Pointers in C 7

stack (main)

20

age

p_age

int main() {
int age = 20;
int *p_age = &age;

// ...

return 0;
}

Variable Memory address Content

...

a 0x7ffe66dd68ac 20

...

p_age 0x7ffe8e2379aa 0x7ffe66dd68ac

...

This box represents
the memory handled

in the scope of the
main function

This C program
defines a regular

integer variable (int)
and a pointer to
integer (int*)

This table represents the
physical memory of the
computer running the C

program

https://github.com/bonigarcia/c-programming/blob/master/pointers/basic_pointer_1.c

2. What are pointers?
• The following example illustrates a very basic declaration an usage of

a pointer variable:

Systems Architecture - 5. Pointers in C 8

#include <stdio.h>

int main() {
int age = 20;
int *p_age = &age;

printf("The value of the variable age is %d\n", age);
printf("The memory address in which age is stored is %p\n", p_age);
printf("The value pointed by p_age is %d\n", *p_age);
return 0;

}

The value of the variable age is 20
The memory address in which age is stored is 0x7ffe66dd68ac
The value pointed by p_age is 20

stack (main)

20

age

p_age

https://github.com/bonigarcia/c-programming/blob/master/pointers/basic_pointer_1.c

#include <stdio.h>

int main() {
int age = 20;
int *p_age = &age;

printf("The value of the variable age is %d\n", age);
printf("The memory address in which age is stored is %p\n", p_age);
printf("The value pointed by p_age is %d\n", *p_age);

age = 40;

printf("The value of the variable age is %d\n", age);
printf("The value pointed by p_age is %d\n", *p_age);

return 0;
}

2. What are pointers?

Systems Architecture - 5. Pointers in C 9

What is the value of *p_age
in this example?

https://github.com/bonigarcia/c-programming/blob/master/pointers/basic_pointer_2.c

Table of contents
1. Introduction
2. What are pointers?
3. Passing arguments by value and by reference
4. Pointers and arrays
5. Pointers and strings
6. Pointers and structs
7. Function pointers
8. NULL pointer
9. Double pointers
10. Program arguments
11. Takeaways

Systems Architecture - 5. Pointers in C 10

3. Passing arguments by value and by reference
• We when invoke a function in C, and their arguments are not

pointers, we say that we are passing arguments by value. Passing
arguments by value implies:
− Values of caller parameters are copied to the function
− Changes made inside functions are not reflected in caller parameters

• On the other hand, if the arguments of a function are pointers, we say
that the arguments are passed by reference. This implies:
− Both the caller and functional parameters refer to the same location
− Changes made inside the function are reflected in caller parameters

• To illustrate it, consider the swap function, which is a simple function
that exchanges the values of two variables

Systems Architecture - 5. Pointers in C 11

3. Passing arguments by value and by reference

Systems Architecture - 5. Pointers in C 12

#include <stdio.h>

void swap(int first, int second) {
int tmp;

tmp = first;
first = second;
second = tmp;

}

int main() {
int a = 100;
int b = 200;

puts("Before swap:");
printf("\t a=%d \n", a);
printf("\t b=%d \n", b);

swap(a, b);

puts("After swap:");
printf("\t a=%d \n", a);
printf("\t b=%d \n", b);

return 0;
}

Before swap:
a=100
b=200

stack (main)

100

a

200

b

stack (swap)

100

first

200

second

This is an example of a function
(swap) using pass by value

https://github.com/bonigarcia/c-programming/blob/master/pointers/pass_by_value.c

3. Passing arguments by value and by reference

Systems Architecture - 5. Pointers in C 13

#include <stdio.h>

void swap(int first, int second) {
int tmp;

tmp = first;
first = second;
second = tmp;

}

int main() {
int a = 100;
int b = 200;

puts("Before swap:");
printf("\t a=%d \n", a);
printf("\t b=%d \n", b);

swap(a, b);

puts("After swap:");
printf("\t a=%d \n", a);
printf("\t b=%d \n", b);

return 0;
}

Before swap:
a=100
b=200

stack (main)

100

a

200

b

stack (swap)

200

first

100

second

100

tmp

https://github.com/bonigarcia/c-programming/blob/master/pointers/pass_by_value.c

3. Passing arguments by value and by reference

Systems Architecture - 5. Pointers in C 14

#include <stdio.h>

void swap(int first, int second) {
int tmp;

tmp = first;
first = second;
second = tmp;

}

int main() {
int a = 100;
int b = 200;

puts("Before swap:");
printf("\t a=%d \n", a);
printf("\t b=%d \n", b);

swap(a, b);

puts("After swap:");
printf("\t a=%d \n", a);
printf("\t b=%d \n", b);

return 0;
}

Before swap:
a=100
b=200

After swap:
a=100
b=200

stack (main)

100

a

200

b

https://github.com/bonigarcia/c-programming/blob/master/pointers/pass_by_value.c

3. Passing arguments by value and by reference

Systems Architecture - 5. Pointers in C 15

#include <stdio.h>

void swap(int *p_first, int *p_second) {
int tmp;

tmp = *p_first;
*p_first = *p_second;
*p_second = tmp;

}

int main() {
int a = 100;
int b = 200;

puts("Before swap:");
printf("\t a=%d \n", a);
printf("\t b=%d \n", b);

swap(&a, &b);

puts("After swap:");
printf("\t a=%d \n", a);
printf("\t b=%d \n", b);

return 0;
}

Before swap:
a=100
b=200

stack (main)

100

a

200

b

stack (swap)

p_first

p_second

This is an example of a function
(swap) using pass by reference

https://github.com/bonigarcia/c-programming/blob/master/pointers/pass_by_ref.c

3. Passing arguments by value and by reference

Systems Architecture - 5. Pointers in C 16

#include <stdio.h>

void swap(int *p_first, int *p_second) {
int tmp;

tmp = *p_first;
*p_first = *p_second;
*p_second = tmp;

}

int main() {
int a = 100;
int b = 200;

puts("Before swap:");
printf("\t a=%d \n", a);
printf("\t b=%d \n", b);

swap(&a, &b);

puts("After swap:");
printf("\t a=%d \n", a);
printf("\t b=%d \n", b);

return 0;
}

Before swap:
a=100
b=200

stack (main)

200

a

100

b

stack (swap)

p_first

p_second

100

tmp

https://github.com/bonigarcia/c-programming/blob/master/pointers/pass_by_ref.c

3. Passing arguments by value and by reference

Systems Architecture - 5. Pointers in C 17

#include <stdio.h>

void swap(int *p_first, int *p_second) {
int tmp;

tmp = *p_first;
*p_first = *p_second;
*p_second = tmp;

}

int main() {
int a = 100;
int b = 200;

puts("Before swap:");
printf("\t a=%d \n", a);
printf("\t b=%d \n", b);

swap(&a, &b);

puts("After swap:");
printf("\t a=%d \n", a);
printf("\t b=%d \n", b);

return 0;
}

Before swap:
a=100
b=200

After swap:
a=200
b=100

stack (main)

200

a

100

b

Arguments passed by
reference are sometimes

called “output arguments”,
since the function can

modify the value stored at
that address, which will be

reflected in the original
variable

https://github.com/bonigarcia/c-programming/blob/master/pointers/pass_by_ref.c

3. Passing arguments by value and by reference
• The scanf function works using output arguments (i.e., passed by

reference):

• For this reason, when we invoke scanf for basic types (e.g. char,
int, etc.), we need to use the reference operator (&)

Systems Architecture - 5. Pointers in C 18

int scanf(const char *format, ...);

The varargs parameters in scanf need to be
pointers, because the changes made inside the

function scanf are reflected in caller parameters

int i;
char str[40];

scanf("%d", &i);
scanf("%s", str);

Table of contents
1. Introduction
2. What are pointers?
3. Passing arguments by value and by reference
4. Pointers and arrays
5. Pointers and strings
6. Pointers and structs
7. Function pointers
8. NULL pointer
9. Double pointers
10. Program arguments
11. Takeaways

Systems Architecture - 5. Pointers in C 19

4. Pointers and arrays
• We already know that arrays are collections of data with the same

type and stored at contiguous memory
• Arrays behave similarly to pointers, since internally, an array variable

is a constant pointer pointing to the first element of the array

Systems Architecture - 5. Pointers in C 20

int main() {
int array[] = { 25, 50, 75, 100 };

// ...
}

stack (main)

array

25 50 75 100

4. Pointers and arrays
• This fact has relevant implications. For example consider the following

program:

Systems Architecture - 5. Pointers in C 21

#include <stdio.h>
#define SIZE 4

void double_array(int array[], int size) {
for (int i = 0; i < size; i++) {

array[i] *= 2;
}

}

int main() {
int array[SIZE] = { 25, 50, 75, 100 };

double_array(array, SIZE);

printf("%d\n", array[0]);

return 0;
}

What can we see in the standard
output when this program is

executed?

https://github.com/bonigarcia/c-programming/blob/master/pointers/arrays_1.c

4. Pointers and arrays
• A pointer in c is a memory address, which is a numeric value
• We can perform basic arithmetic operations (i.e., addition and

subtraction) on pointers

Systems Architecture - 5. Pointers in C 22

#include <stdio.h>

int main() {
int array[] = { 25, 50, 75, 100 };

int *a = array; // initial address
int *b = array + 1; // initial address + (sizeof(int) * 1)
int *c = array + 2; // initial address + (sizeof(int) * 2)
int *d = array + 3; // initial address + (sizeof(int) * 3)

printf("*a=%d\n", *a);
printf("*b=%d\n", *b);
printf("*c=%d\n", *c);
printf("*d=%d\n", *d);

return 0;
}

*a=25
*b=50
*c=75
*d=100

https://github.com/bonigarcia/c-programming/blob/master/pointers/arrays_3.c

4. Pointers and arrays
• One key difference between array and pointers is the size of the

memory required
− When arrays are created, a fixed size of the memory is allocated
− That size is unknown when using pointers
− We can check this difference by invoking the operator sizeof

Systems Architecture - 5. Pointers in C 23

#include <stdio.h>

int main() {
int array[8];
int *pointer = array;

unsigned int s1 = sizeof(array);
unsigned int s2 = sizeof(pointer);

printf("s1=%d\n", s1);
printf("s2=%d\n", s2);

return 0;
}

s1=32
s2=8

https://github.com/bonigarcia/c-programming/blob/master/pointers/arrays_4.c

4. Pointers and arrays
• Also, remember that array variables cannot be assigned of another

variable (we use the memcpy function instead):

Systems Architecture - 5. Pointers in C 24

#include <stdio.h>
#include <string.h>
#define SIZE 4

void display_array(int array[], int size) {
for (int i = 0; i < size; i++) {

printf("array[%d]=%d\n", i, array[i]);
}
printf("\n");

}

int main() {
int array_1[SIZE] = { 25, 50, 75, 100 };
int array_2[SIZE];

memcpy(array_2, array_1, sizeof(array_1));

display_array(array_1, SIZE);
display_array(array_2, SIZE);

return 0;
}

array[0]=25
array[1]=50
array[2]=75
array[3]=100

array[0]=25
array[1]=50
array[2]=75
array[3]=100

#include <stdio.h>
#define SIZE 4

int main() {
int array_1[SIZE] = { 25, 50, 75, 100 };
int array_2[SIZE];

array_2 = array_1; // forbidden

return 0;
}

arrays_5_error.c: In function ‘main’:
arrays_5_error.c:8:13: error: assignment to expression
with array type

8 | array_2 = array_1; // forbidden
| ^

https://github.com/bonigarcia/c-programming/blob/master/arrays/arrays_5_fixed.c

Table of contents
1. Introduction
2. What are pointers?
3. Passing arguments by value and by reference
4. Pointers and arrays
5. Pointers and strings
6. Pointers and structs
7. Function pointers
8. NULL pointer
9. Double pointers
10. Program arguments
11. Takeaways

Systems Architecture - 5. Pointers in C 25

5. Pointers and strings
• As we already know, there is no type in C for handling strings
• Instead, we use array of characters

− For that, we can use arrays or pointers

Systems Architecture - 5. Pointers in C 26

#include <stdio.h>

int main() {
char *greetings = "Hello";
printf("%s\n", greetings);

return 0;
}

If we do not assign an string
value in the declaration of the

variable, we will need to
allocate memory later in the

program (we will see this in the
next lecture about dynamic

memory)

https://github.com/bonigarcia/c-programming/blob/master/strings/basic_string_3.c

Table of contents
1. Introduction
2. What are pointers?
3. Passing arguments by value and by reference
4. Pointers and arrays
5. Pointers and strings
6. Pointers and structs
7. Function pointers
8. NULL pointer
9. Double pointers
10. Program arguments
11. Takeaways

Systems Architecture - 5. Pointers in C 27

6. Pointers and structs
• We can use the arrow operator (->) for accessing members of an

structure using pointers

Systems Architecture - 5. Pointers in C 28

#include <stdio.h>

#define MAX_STR 80

typedef struct Person {
char name[MAX_STR];
int age;

} Person;

int main() {
Person person = { "Alice", 25 };
Person *pointer = &person;

printf("Name: %s -- Age: %d\n", (*pointer).name, (*pointer).age);
printf("Name: %s -- Age: %d\n", pointer->name, pointer->age);

return 0;
}

Name: Alice -- Age: 25
Name: Alice -- Age: 25

(*pointer).name and
pointer->name are

equivalent, although the use
of the arrow operator is more

readable

https://github.com/bonigarcia/c-programming/blob/master/pointers/struct_pointer.c

Table of contents
1. Introduction
2. What are pointers?
3. Passing arguments by value and by reference
4. Pointers and arrays
5. Pointers and strings
6. Pointers and structs
7. Function pointers
8. NULL pointer
9. Double pointers
10. Program arguments
11. Takeaways

Systems Architecture - 5. Pointers in C 29

7. Function pointers
• A function pointer in C is a variable that stores the address of a

function
− This allows for dynamic function calls, where the function to be executed is

determined at runtime

Systems Architecture - 5. Pointers in C 30

#include <stdio.h>

int add(int a, int b) {
return a + b;

}

int main() {
int (*func_ptr)(int, int); // Declare a function pointer
func_ptr = add; // Assign the address of 'add' function to the pointer

int result = func_ptr(5, 3); // Call the function using the pointer
printf("Result: %d\n", result); // Output will be 8

return 0;
}

See a more complex
example in the GitHub

repository

https://github.com/bonigarcia/c-programming/blob/master/pointers/function_pointer_1.c
https://github.com/bonigarcia/c-programming/blob/master/pointers/function_pointer_2.c

Table of contents
1. Introduction
2. What are pointers?
3. Passing arguments by value and by reference
4. Pointers and arrays
5. Pointers and strings
6. Pointers and structs
7. Function pointers
8. NULL pointer
9. Double pointers
10. Program arguments
11. Takeaways

Systems Architecture - 5. Pointers in C 31

8. NULL pointer
• Several programming languages (such as C, Java, JavaScript or Python,

among others) has the concept of null as a special marker indicating that
something has no value

• In C, NULL is a special reserved pointer value that does not point to any valid
data object

• We can think in NULL in C like a memory address (i.e., a pointer) with all its
bits put to zero
− In a 64 bits computer: NULL = 0x0000000000000000 (represented as 0x0 in

hexadecimal)
− Therefore, NULL is interpreted as false in expressions

• Some of the most common use cases for NULL are
− To initialize a pointer variable when that pointer variable hasn’t been assigned any

valid memory address yet
− To check for a null pointer before accessing any pointer variable

Systems Architecture - 5. Pointers in C 32

8. NULL pointer
• The following example illustrates a very basic usage of a NULL pointer:

Systems Architecture - 5. Pointers in C 33

#include <stdio.h>

int main() {
int *pointer = NULL;

/*
This equivalent to:
if (pointer == 0)
if (!pointer)
*/
if (pointer == NULL) {

printf("Pointer is NULL\n");
}

return 0;
}

Pointer is NULL

https://github.com/bonigarcia/c-programming/blob/master/pointers/null_pointer_1.c

8. NULL pointer
• The following example show how null and non-null references are

displayed:

Systems Architecture - 5. Pointers in C 34

#include <stdio.h>

int main() {
int *null_pointer = NULL;
char *my_string = "Hello";

printf("The address of null_pointer is %p\n", null_pointer);
printf("The address of my_string is %p\n", my_string);

return 0;
}

The address of null_pointer is (nil)
The address of my_string is 0x55c366f79008

https://github.com/bonigarcia/c-programming/blob/master/pointers/null_pointer_2.c

Table of contents
1. Introduction
2. What are pointers?
3. Passing arguments by value and by reference
4. Pointers and arrays
5. Pointers and strings
6. Pointers and structs
7. Function pointers
8. NULL pointer
9. Double pointers
10. Program arguments
11. Takeaways

Systems Architecture - 5. Pointers in C 35

9. Double pointers
• A double pointer (also known as pointer to a pointer) is a form of

multiple indirection, i.e., a chain of pointers
− We use two stars (**) to declare a double pointer

Systems Architecture - 5. Pointers in C 36

#include <stdio.h>

int main() {
int age = 20;
int *pointer = &age;
int **double_pointer = &pointer;

printf("The value of the variable age is %d\n", age);
printf("The value pointed by *pointer is %d\n", *pointer);
printf("The value pointed by **double_pointer is %d\n", **double_pointer);

return 0;
}

stack (main)

20

age

pointer

double_pointer

The value of the variable age is 20
The value pointed by *pointer is 20
The value pointed by **double_pointer is 20

https://github.com/bonigarcia/c-programming/blob/master/pointers/double_pointer_1.c

9. Double pointers
• Here are some common scenarios where double pointers are used:

− To implement two-dimension arrays (e.g., a arrays of strings)
− To modify a pointer outside its scope, e.g. for memory allocation (we will see

this in the next unit)

Systems Architecture - 5. Pointers in C 37

#include <stdio.h>

int main() {
char *words[2];
words[0] = "hello";
words[1] = "world";

printf("words[0]=%s\n", words[0]);
printf("words[1]=%s\n", words[1]);

return 0;
}

words[0]=hello
words[1]=world

https://github.com/bonigarcia/c-programming/blob/master/pointers/double_pointer_2.c

Table of contents
1. Introduction
2. What are pointers?
3. Passing arguments by value and by reference
4. Pointers and arrays
5. Pointers and strings
6. Pointers and structs
7. Function pointers
8. NULL pointer
9. Double pointers
10. Program arguments
11. Takeaways

Systems Architecture - 5. Pointers in C 38

10. Program arguments
• We already know that the entry point of any C program is the main

function

• We also know that shell commands can be invoked with a list of
arguments (after the command name)

Systems Architecture - 5. Pointers in C 39

int main() {

// ...

}

$ command <arg1> <arg2>

But, how can we handle
arguments passed from the

command line in our C
programs?

10. Program arguments
• To pass command line arguments, we typically define main() with

two arguments:
− argc (argument count): it is an integer value that stores the number of

command-line arguments passed by the user including the name of the
program

− argv (argument vector): it is array of character pointers listing all the
arguments

Systems Architecture - 5. Pointers in C 40

int main(int argc, char *argv[]) {

// ...

}

int main(int argc, char **argv) {

// ...

}

These two ways to defined the
main arguments are equivalent
These two ways to define the

main arguments are equivalent

10. Program arguments
• This program illustrates the use of program arguments:

Systems Architecture - 5. Pointers in C 41

#include <stdio.h>

int main(int argc, char *argv[]) {
printf("This program was called with \"%s\"\n", argv[0]);

if (argc > 1) {
for (int i = 1; i < argc; i++) {

printf("argv[%d] = %s\n", i, argv[i]);
}

} else {
puts("The command had no other arguments");

}

return 0;
}

$ gcc args.c -o my-program

$./my-program
This program was called with "./my-program"
The command had no other arguments

$./my-program 1 hello 2 world
This program was called with "./my-program"
argv[1] = 1
argv[2] = hello
argv[3] = 2
argv[4] = world

https://github.com/bonigarcia/c-programming/blob/master/pointers/args.c

Table of contents
1. Introduction
2. What are pointers?
3. Passing arguments by value and by reference
4. Pointers and arrays
5. Pointers and strings
6. Pointers and structs
7. Function pointers
8. NULL pointer
9. Double pointers
10. Program arguments
11. Takeaways

Systems Architecture - 5. Pointers in C 42

11. Takeaways
• A pointer in C is a variable that stores a memory address
• There are two operators in C to handle pointers: & (address-of) and * (pointer declaration and

value-of)
• When the arguments of a function are pointers, we say that the arguments are passed by

reference. In this case, changes made inside the function are reflected in caller parameters
• Arrays behave similarly to pointers, since internally, an array variable is a constant pointer

pointing to the first element of the array
• We use array of characters (or a pointer to char) to handle strings in C
• We can use the arrow operator (->) for accessing members of an structure using pointers
• Function pointers provide a way to store the address of a function in a variable
• NULL is a special reserved pointer value that does not point to any valid data object
• A double pointer (**) is a chain of pointers (e.g. to allocate memory for a pointer outside its

scope)
• To pass command line arguments, we define the main function with argc (argument count)

and argv (argument vector)

Systems Architecture - 5. Pointers in C 43

	Systems Architecture
	Table of contents
	1. Introduction
	Table of contents
	2. What are pointers?
	2. What are pointers?
	2. What are pointers?
	2. What are pointers?
	2. What are pointers?
	Table of contents
	3. Passing arguments by value and by reference
	3. Passing arguments by value and by reference
	3. Passing arguments by value and by reference
	3. Passing arguments by value and by reference
	3. Passing arguments by value and by reference
	3. Passing arguments by value and by reference
	3. Passing arguments by value and by reference
	3. Passing arguments by value and by reference
	Table of contents
	4. Pointers and arrays
	4. Pointers and arrays
	4. Pointers and arrays
	4. Pointers and arrays
	4. Pointers and arrays
	Table of contents
	5. Pointers and strings
	Table of contents
	6. Pointers and structs
	Table of contents
	7. Function pointers
	Table of contents
	8. NULL pointer
	8. NULL pointer
	8. NULL pointer
	Table of contents
	9. Double pointers
	9. Double pointers
	Table of contents
	10. Program arguments
	10. Program arguments
	10. Program arguments
	Table of contents
	11. Takeaways

