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1. Introduction
• So far, we have done C programs with all the logic inside the same 

source file (e.g., my-program.c)
• As C programs grow larger and larger, monolithic programs become 

difficult to maintain, test, and debug 
• For this reason, it is often desirable to split the source code into 

different files (called modules)
• Modularity is important in C programming because it promotes code 

readability, reusability, maintainability, and flexibility
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2. The preprocessor
• The C preprocessor is a tool used automatically by the C compiler to 

transform the program before actual compilation 
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hello.c hello.i

1. Preprocessing

hello.s

2. Compilation 3. Assembly

hello.o

4. Linkage

hello

The C preprocessor 
operates at the beginning 

of the build process



2. The preprocessor
• Preprocessor directives are lines included in the code of programs 

preceded by a hash sign (#) 
• The preprocessor examines the code and resolves all these directives 

before actual compilation
• So far, we have seen a couple of preprocessor directives
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#include <standard_c_lib.h>

To use some C standard 
library, such as stdio.h, 

stdlib.h, etc.

#define MACRO value To declare a constant value



2. The preprocessor
• The C preprocessor also allows conditional compilation through the 

following directives:

• There is a second directive for conditional compilation called 
#ifndef, which is used typically for modular programming
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#ifdef MACRO
/* Code block 1 */

#else
/* Code block 2 */

#endif

If MACRO is defined, the first 
code block is included for 

compilation. Otherwise, the 
second block is included



2. The preprocessor
• Let’s consider the following example:
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#include <stdio.h>

int main() {
printf("Hello world\n");

#ifdef DEBUG
fprintf(stderr, "This is a debug message\n");

#endif

return 0;
}

$ gcc debug_1.c && ./a.out
Hello world

By default, this message will 
not be displayed, since 

DEBUG is not defined in this 
program

https://github.com/bonigarcia/c-programming/blob/master/debug/debug_1.c


2. The preprocessor
• GCC allows defining macros in the command line using the option –D

• This way, the previous example displays the debug message if we 
define the macro DEBUG in the compilation command:
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$ gcc -Dname [options] [source files] [-o output file]
$ gcc -Dname=definition [options] [source files] [-o output file]

#include <stdio.h>

int main() {
printf("Hello world\n");

#ifdef DEBUG
fprintf(stderr, "This is a debug message\n");

#endif

return 0;
}

$ gcc debug_1.c && ./a.out
Hello world

$ gcc debug_1.c -DDEBUG && ./a.out
Hello world
This is a debug message

https://github.com/bonigarcia/c-programming/blob/master/debug/debug_1.c


2. The preprocessor
• In addition to constants, the directive #define also allows to create 

macros with arguments

• These macros work like regular functions in C. For instance:
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#define MACRO(arguments) expression

#include <stdio.h>

#ifdef DEBUG
#define debug(msg) fprintf(stderr, msg)
#else
#define debug(msg)
#endif

int main() {
printf("Hello world\n");
debug("This is a debug message\n");
return 0;

}

$ gcc debug_2.c && ./a.out
Hello world

$ gcc debug_2.c -DDEBUG && ./a.out
Hello world
This is a debug message

https://github.com/bonigarcia/c-programming/blob/master/debug/debug_2.c
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3. Modularity
• For implementing modules in C, we need to separate the logic in two 

different files:
− Header files (.h), which  contains functions declarations, global structures, 

and macro definitions to be shared between several source files (.c)
− Source files (.c) which contains the function definitions
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monolithic modular

program.c main.c

module1.h

module2.h

module1.c

module2.c



3. Modularity
• We are going to study modularity through several examples. Consider 

the following monolithic program that we want to convert in modular
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#include <stdio.h>

#define MAX_STR 80

typedef struct Person {
char name[MAX_STR];
int age;

} Person;

int sum_ages(Person a, Person b);

int main() {
Person alice = { "Alice", 25 };
Person bob = { "Bob", 32 };

printf("Alice and Bob has %d years together\n", sum_ages(alice, bob));
return 0;

}

int sum_ages(Person a, Person b) {
return a.age + b.age;

}

program.c

https://github.com/bonigarcia/c-programming/blob/master/modules/program.c


3. Modularity
• We want to separate the declarations and macro definitions to a 

header file (.h), and the functions definitions to a source file (.c)
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#include <stdio.h>

#define MAX_STR 80

typedef struct Person {
char name[MAX_STR];
int age;

} Person;

int sum_ages(Person a, Person b);

int main() {
Person alice = { "Alice", 25 };
Person bob = { "Bob", 32 };

printf("Alice and Bob has %d years together\n", sum_ages(alice, bob));
return 0;

}

int sum_ages(Person a, Person b) {
return a.age + b.age;

}

Macro definition

Structure declaration

Function declaration

Function definition

https://github.com/bonigarcia/c-programming/blob/master/modules/program.c


#ifndef PERSON_H
#define PERSON_H

#define MAX_STR 80

typedef struct Person {
char name[MAX_STR];
int age;

} Person;

int sum_ages(Person a, Person b);

#endif

#ifndef and #define are known 
as header guards. Their primary 

purpose is to prevent header files 
from being included multiple times

3. Modularity
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#include <stdio.h>
#include "person.h"

int main() {
Person alice = { "Alice", 25 };
Person bob = { "Bob", 32 };

printf("Alice and Bob has %d years together\n",
sum_ages(alice, bob));

return 0;
}

#include "person.h"

int sum_ages(Person a, Person b) {
return a.age + b.age;

}

main.c

person.c

person.h

Notice that the directive #include
also allows to include custom header 

files (when using " ")

https://github.com/bonigarcia/c-programming/tree/master/modules/mod1


3. Modularity
• GCC allows compilating separately the modules, and then a linkage 

the resulting object files into a single binary file
− For instance, in the example before:

• To simplify, and supposing that all modules of our program belong to 
the same folder, we can compile and linkage all modules using a 
single command
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gcc main.c -c

The flag -c compiles and assemble, but do not 
link. In this example, it only produces main.o

gcc person.c -c It only produces person.o

gcc main.o person.o -o main It links main.o and person.o, producing the 
executable program (called main in this example

gcc *.c -o main

It produces the executable program with a 
single command. This command assumes all 

source files (*.c) are in the same folder



3. Modularity
• To see the importance of header guards, let’s consider now another 

example of a program composed of two modules:
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main.c

person.h

job.h

person.c

job.c



#ifndef PERSON_H
#define PERSON_H

#define MAX_STR 80

typedef struct Person {
char name[MAX_STR];
int age;

} Person;

int sum_ages(Person a, Person b);

#endif

3. Modularity
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#include <stdio.h>
#include "person.h"
#include "job.h"

int main() {
Person alice = { "Alice", 25 };
Person bob = { "Bob", 32 };

Job developer = { alice, "developer" };
Job tester = { bob, "tester" };

display_job(developer);
display_job(tester);

return 0;
}

#ifndef JOB_H
#define JOB_H

#include "person.h"

typedef struct Job {
Person person;
char role[MAX_STR];

} Job;

void display_job(Job job);

#endif

main.c

job.h

person.h

In file included from job.h:4,
from main.c:3:

person.h:4:16: error: redefinition of ‘struct Person’
4 | typedef struct Person {

|                ^~~~~~
In file included from main.c:2:
person.h:4:16: note: originally defined here

4 | typedef struct Person {
|                ^~~~~~

Without header 
guards, we will get 

compilation errors like 
this:

https://github.com/bonigarcia/c-programming/tree/master/modules/mod2


3. Modularity
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• When using global variables, we need to use the keyword extern in 
the variables defined in other module:

#include <stdio.h>
#include "job.h"

extern Job company[];

void display_job(Job job) {
printf("%s is a %s\n", job.person.name, job.role);

}

void display_job_by_index(int i) {
display_job(company[i]);

}

#include <stdio.h>
#include "person.h"
#include "job.h"

Job company[MAX_JOBS];

int main() {
Person alice = { "Alice", 25 };
Person bob = { "Bob", 32 };

Job developer = { alice, "developer" };
Job tester = { bob, "tester" };

company[0] = developer;
company[1] = tester;

display_job_by_index(0);
display_job_by_index(1);

return 0;
}

main.c

job.c

https://github.com/bonigarcia/c-programming/tree/master/modules/mod3


3. Modularity
• Common bad practices in modular programming in C are:

− Include global variables in headers files

− Include functions definitions in headers file:
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person.h

#ifndef JOB_H
#define JOB_H

typedef struct Job {
Person person;
char role[MAX_STR];

} Job;

Job company[MAX_JOBS];

#endif

This might lead to 
multiple definition errors

void display_job(Job job) {
printf("%s is a %s\n", job.person.name, job.role);

}

void display_job_by_index(int i) {
display_job(company[i]);

}

job.h
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4. Makefile
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• The make tool allows managing and maintaining computer programs 
consisting in several component files

• The make tool reads the instruction defined in a file called Makefile
(also known as descriptor file)

• The Makefile file is composed by a sets a set of rules to determine 
which parts of a program need to be compiled, how it is executed, or 
how to clean the intermediate file (e.g. object files)

https://www.gnu.org/software/make/

https://www.gnu.org/software/make/


4. Makefile
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• A Makefile is made up of different sections, each one containing:
− Target: Normally, an executable or object file
− Dependencies: Source code or other targets
− Rules:  Set of commands needed to make the target

• Also, it is possible to define variables in a Makefile:

# Comment
target: dependency

command_1
command_2
...
command_N

Important: every rule line 
begins with a tab, not spaces

VAR_NAME=value



4. Makefile
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• For example (module 1):

CFLAGS=-Wall

compile:
gcc $(CFLAGS) main.c -c
gcc $(CFLAGS) person.c -c
gcc $(CFLAGS) main.o person.o -o main

clean:
rm -f *.o
rm -f main

run: compile
./main

$ make
gcc -Wall main.c -c
gcc -Wall person.c -c
gcc -Wall main.o person.o -o main

$ make run
gcc -Wall main.c -c
gcc -Wall person.c -c
gcc -Wall main.o person.o -o main
./main
Alice and Bob has 57 years together

$ make clean
rm -f *.o
rm -f main

https://github.com/bonigarcia/c-programming/tree/master/modules/mod1/Makefile


4. Makefile
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• Another example (module 2):

$ make
gcc -Wall *.c -o main

$ make run
gcc -Wall *.c -o main
./main
Alice is a developer
Bob is a tester

$ make clean
rm -f main

CFLAGS=-Wall

compile:
gcc $(CFLAGS) *.c -o main

clean:
rm -f main

run: compile
./main

https://github.com/bonigarcia/c-programming/tree/master/modules/mod2/Makefile
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5. Static variables
• Static variables are defined using the keyword static

− These variables are initialized only once
− Therefore, the compiler persists with the variable till the end of the program
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#include <stdio.h>

void my_function() {
int regular_int = 0;
static int static_int = 0;

regular_int++;
static_int++;

printf("regular_int = %d, static_int = %d\n", regular_int, static_int);
}

int main() {
for (int i = 0; i < 10; i++) {

my_function();
}

}

regular_int = 1, static_int = 1
regular_int = 1, static_int = 2
regular_int = 1, static_int = 3
regular_int = 1, static_int = 4
regular_int = 1, static_int = 5
regular_int = 1, static_int = 6
regular_int = 1, static_int = 7
regular_int = 1, static_int = 8
regular_int = 1, static_int = 9
regular_int = 1, static_int = 10

https://github.com/bonigarcia/c-programming/blob/master/variables/static.c


5. Static variables
• We can also use the static keyword for implementing encapsulation

in module (i.e., access restriction):
− Static global variables are not visible outside of the file they are defined in
− Static functions are not visible outside of the C file they are defined in
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#include <stdio.h>
#include "person.h"
#include "job.h"

static Job company[MAX_JOBS];

int main() {
// ...

return 0;
}

For instance, this variable 
can only be used in this 

file (even if other files try 
to access with extern)
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6. Takeaways
• The C preprocessor is a used automatically by the C compiler to expand 

macros (e.g. #include, #define) or conditional compiling (e.g. #ifded, 
#ifndef)

• GCC allows defining macros in the command line using the option -D (e.g., for 
debugging)

• For modular programs in C, we need to separate the logic into headers (.h) 
and source (.c) files

• Header files (.h) will contain functions declarations, global structures, and 
macro definitions, while source files (.c) will contain the function definitions

• The make tool reads the instructions defined in a file called Makefile (also 
known as descriptor file) to compile, execute or clean C programs

• Static variables (defined with the keyword static) in C are initialized only 
once
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