
Systems Architecture
4. Modular programming in C

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. The preprocessor
3. Modularity
4. Makefile
5. Static variables
6. Takeaways

Systems Architecture - 4. Modular programming in C 2

1. Introduction
• So far, we have done C programs with all the logic inside the same

source file (e.g., my-program.c)
• As C programs grow larger and larger, monolithic programs become

difficult to maintain, test, and debug
• For this reason, it is often desirable to split the source code into

different files (called modules)
• Modularity is important in C programming because it promotes code

readability, reusability, maintainability, and flexibility

Systems Architecture - 4. Modular programming in C 3

Table of contents
1. Introduction
2. The preprocessor
3. Modularity
4. Makefile
5. Static variables
6. Takeaways

Systems Architecture - 4. Modular programming in C 4

2. The preprocessor
• The C preprocessor is a tool used automatically by the C compiler to

transform the program before actual compilation

Systems Architecture - 4. Modular programming in C 5

hello.c hello.i

1. Preprocessing

hello.s

2. Compilation 3. Assembly

hello.o

4. Linkage

hello

The C preprocessor
operates at the beginning

of the build process

2. The preprocessor
• Preprocessor directives are lines included in the code of programs

preceded by a hash sign (#)
• The preprocessor examines the code and resolves all these directives

before actual compilation
• So far, we have seen a couple of preprocessor directives

Systems Architecture - 4. Modular programming in C 6

#include <standard_c_lib.h>

To use some C standard
library, such as stdio.h,

stdlib.h, etc.

#define MACRO value To declare a constant value

2. The preprocessor
• The C preprocessor also allows conditional compilation through the

following directives:

• There is a second directive for conditional compilation called
#ifndef, which is used typically for modular programming

Systems Architecture - 4. Modular programming in C 7

#ifdef MACRO
/* Code block 1 */

#else
/* Code block 2 */

#endif

If MACRO is defined, the first
code block is included for

compilation. Otherwise, the
second block is included

2. The preprocessor
• Let’s consider the following example:

Systems Architecture - 4. Modular programming in C 8

#include <stdio.h>

int main() {
printf("Hello world\n");

#ifdef DEBUG
fprintf(stderr, "This is a debug message\n");

#endif

return 0;
}

$ gcc debug_1.c && ./a.out
Hello world

By default, this message will
not be displayed, since

DEBUG is not defined in this
program

https://github.com/bonigarcia/c-programming/blob/master/debug/debug_1.c

2. The preprocessor
• GCC allows defining macros in the command line using the option –D

• This way, the previous example displays the debug message if we
define the macro DEBUG in the compilation command:

Systems Architecture - 4. Modular programming in C 9

$ gcc -Dname [options] [source files] [-o output file]
$ gcc -Dname=definition [options] [source files] [-o output file]

#include <stdio.h>

int main() {
printf("Hello world\n");

#ifdef DEBUG
fprintf(stderr, "This is a debug message\n");

#endif

return 0;
}

$ gcc debug_1.c && ./a.out
Hello world

$ gcc debug_1.c -DDEBUG && ./a.out
Hello world
This is a debug message

https://github.com/bonigarcia/c-programming/blob/master/debug/debug_1.c

2. The preprocessor
• In addition to constants, the directive #define also allows to create

macros with arguments

• These macros work like regular functions in C. For instance:

Systems Architecture - 4. Modular programming in C 10

#define MACRO(arguments) expression

#include <stdio.h>

#ifdef DEBUG
#define debug(msg) fprintf(stderr, msg)
#else
#define debug(msg)
#endif

int main() {
printf("Hello world\n");
debug("This is a debug message\n");
return 0;

}

$ gcc debug_2.c && ./a.out
Hello world

$ gcc debug_2.c -DDEBUG && ./a.out
Hello world
This is a debug message

https://github.com/bonigarcia/c-programming/blob/master/debug/debug_2.c

Table of contents
1. Introduction
2. The preprocessor
3. Modularity
4. Makefile
5. Static variables
6. Takeaways

Systems Architecture - 4. Modular programming in C 11

3. Modularity
• For implementing modules in C, we need to separate the logic in two

different files:
− Header files (.h), which contains functions declarations, global structures,

and macro definitions to be shared between several source files (.c)
− Source files (.c) which contains the function definitions

Systems Architecture - 4. Modular programming in C 12

monolithic modular

program.c main.c

module1.h

module2.h

module1.c

module2.c

3. Modularity
• We are going to study modularity through several examples. Consider

the following monolithic program that we want to convert in modular

Systems Architecture - 4. Modular programming in C 13

#include <stdio.h>

#define MAX_STR 80

typedef struct Person {
char name[MAX_STR];
int age;

} Person;

int sum_ages(Person a, Person b);

int main() {
Person alice = { "Alice", 25 };
Person bob = { "Bob", 32 };

printf("Alice and Bob has %d years together\n", sum_ages(alice, bob));
return 0;

}

int sum_ages(Person a, Person b) {
return a.age + b.age;

}

program.c

https://github.com/bonigarcia/c-programming/blob/master/modules/program.c

3. Modularity
• We want to separate the declarations and macro definitions to a

header file (.h), and the functions definitions to a source file (.c)

Systems Architecture - 4. Modular programming in C 14

#include <stdio.h>

#define MAX_STR 80

typedef struct Person {
char name[MAX_STR];
int age;

} Person;

int sum_ages(Person a, Person b);

int main() {
Person alice = { "Alice", 25 };
Person bob = { "Bob", 32 };

printf("Alice and Bob has %d years together\n", sum_ages(alice, bob));
return 0;

}

int sum_ages(Person a, Person b) {
return a.age + b.age;

}

Macro definition

Structure declaration

Function declaration

Function definition

https://github.com/bonigarcia/c-programming/blob/master/modules/program.c

#ifndef PERSON_H
#define PERSON_H

#define MAX_STR 80

typedef struct Person {
char name[MAX_STR];
int age;

} Person;

int sum_ages(Person a, Person b);

#endif

#ifndef and #define are known
as header guards. Their primary

purpose is to prevent header files
from being included multiple times

3. Modularity

Systems Architecture - 4. Modular programming in C 15

#include <stdio.h>
#include "person.h"

int main() {
Person alice = { "Alice", 25 };
Person bob = { "Bob", 32 };

printf("Alice and Bob has %d years together\n",
sum_ages(alice, bob));

return 0;
}

#include "person.h"

int sum_ages(Person a, Person b) {
return a.age + b.age;

}

main.c

person.c

person.h

Notice that the directive #include
also allows to include custom header

files (when using " ")

https://github.com/bonigarcia/c-programming/tree/master/modules/mod1

3. Modularity
• GCC allows compilating separately the modules, and then a linkage

the resulting object files into a single binary file
− For instance, in the example before:

• To simplify, and supposing that all modules of our program belong to
the same folder, we can compile and linkage all modules using a
single command

Systems Architecture - 4. Modular programming in C 16

gcc main.c -c

The flag -c compiles and assemble, but do not
link. In this example, it only produces main.o

gcc person.c -c It only produces person.o

gcc main.o person.o -o main It links main.o and person.o, producing the
executable program (called main in this example

gcc *.c -o main

It produces the executable program with a
single command. This command assumes all

source files (*.c) are in the same folder

3. Modularity
• To see the importance of header guards, let’s consider now another

example of a program composed of two modules:

Systems Architecture - 4. Modular programming in C 17

main.c

person.h

job.h

person.c

job.c

#ifndef PERSON_H
#define PERSON_H

#define MAX_STR 80

typedef struct Person {
char name[MAX_STR];
int age;

} Person;

int sum_ages(Person a, Person b);

#endif

3. Modularity

Systems Architecture - 4. Modular programming in C 18

#include <stdio.h>
#include "person.h"
#include "job.h"

int main() {
Person alice = { "Alice", 25 };
Person bob = { "Bob", 32 };

Job developer = { alice, "developer" };
Job tester = { bob, "tester" };

display_job(developer);
display_job(tester);

return 0;
}

#ifndef JOB_H
#define JOB_H

#include "person.h"

typedef struct Job {
Person person;
char role[MAX_STR];

} Job;

void display_job(Job job);

#endif

main.c

job.h

person.h

In file included from job.h:4,
from main.c:3:

person.h:4:16: error: redefinition of ‘struct Person’
4 | typedef struct Person {

| ^~~~~~
In file included from main.c:2:
person.h:4:16: note: originally defined here

4 | typedef struct Person {
| ^~~~~~

Without header
guards, we will get

compilation errors like
this:

https://github.com/bonigarcia/c-programming/tree/master/modules/mod2

3. Modularity

Systems Architecture - 4. Modular programming in C 19

• When using global variables, we need to use the keyword extern in
the variables defined in other module:

#include <stdio.h>
#include "job.h"

extern Job company[];

void display_job(Job job) {
printf("%s is a %s\n", job.person.name, job.role);

}

void display_job_by_index(int i) {
display_job(company[i]);

}

#include <stdio.h>
#include "person.h"
#include "job.h"

Job company[MAX_JOBS];

int main() {
Person alice = { "Alice", 25 };
Person bob = { "Bob", 32 };

Job developer = { alice, "developer" };
Job tester = { bob, "tester" };

company[0] = developer;
company[1] = tester;

display_job_by_index(0);
display_job_by_index(1);

return 0;
}

main.c

job.c

https://github.com/bonigarcia/c-programming/tree/master/modules/mod3

3. Modularity
• Common bad practices in modular programming in C are:

− Include global variables in headers files

− Include functions definitions in headers file:

Systems Architecture - 4. Modular programming in C 20

person.h

#ifndef JOB_H
#define JOB_H

typedef struct Job {
Person person;
char role[MAX_STR];

} Job;

Job company[MAX_JOBS];

#endif

This might lead to
multiple definition errors

void display_job(Job job) {
printf("%s is a %s\n", job.person.name, job.role);

}

void display_job_by_index(int i) {
display_job(company[i]);

}

job.h

Table of contents
1. Introduction
2. The preprocessor
3. Modularity
4. Makefile
5. Static variables
6. Takeaways

Systems Architecture - 4. Modular programming in C 21

4. Makefile

Systems Architecture - 4. Modular programming in C 22

• The make tool allows managing and maintaining computer programs
consisting in several component files

• The make tool reads the instruction defined in a file called Makefile
(also known as descriptor file)

• The Makefile file is composed by a sets a set of rules to determine
which parts of a program need to be compiled, how it is executed, or
how to clean the intermediate file (e.g. object files)

https://www.gnu.org/software/make/

https://www.gnu.org/software/make/

4. Makefile

Systems Architecture - 4. Modular programming in C 23

• A Makefile is made up of different sections, each one containing:
− Target: Normally, an executable or object file
− Dependencies: Source code or other targets
− Rules: Set of commands needed to make the target

• Also, it is possible to define variables in a Makefile:

Comment
target: dependency

command_1
command_2
...
command_N

Important: every rule line
begins with a tab, not spaces

VAR_NAME=value

4. Makefile

Systems Architecture - 4. Modular programming in C 24

• For example (module 1):

CFLAGS=-Wall

compile:
gcc $(CFLAGS) main.c -c
gcc $(CFLAGS) person.c -c
gcc $(CFLAGS) main.o person.o -o main

clean:
rm -f *.o
rm -f main

run: compile
./main

$ make
gcc -Wall main.c -c
gcc -Wall person.c -c
gcc -Wall main.o person.o -o main

$ make run
gcc -Wall main.c -c
gcc -Wall person.c -c
gcc -Wall main.o person.o -o main
./main
Alice and Bob has 57 years together

$ make clean
rm -f *.o
rm -f main

https://github.com/bonigarcia/c-programming/tree/master/modules/mod1/Makefile

4. Makefile

Systems Architecture - 4. Modular programming in C 25

• Another example (module 2):

$ make
gcc -Wall *.c -o main

$ make run
gcc -Wall *.c -o main
./main
Alice is a developer
Bob is a tester

$ make clean
rm -f main

CFLAGS=-Wall

compile:
gcc $(CFLAGS) *.c -o main

clean:
rm -f main

run: compile
./main

https://github.com/bonigarcia/c-programming/tree/master/modules/mod2/Makefile

Table of contents
1. Introduction
2. The preprocessor
3. Modularity
4. Makefile
5. Static variables
6. Takeaways

Systems Architecture - 4. Modular programming in C 26

5. Static variables
• Static variables are defined using the keyword static

− These variables are initialized only once
− Therefore, the compiler persists with the variable till the end of the program

Systems Architecture - 4. Modular programming in C 27

#include <stdio.h>

void my_function() {
int regular_int = 0;
static int static_int = 0;

regular_int++;
static_int++;

printf("regular_int = %d, static_int = %d\n", regular_int, static_int);
}

int main() {
for (int i = 0; i < 10; i++) {

my_function();
}

}

regular_int = 1, static_int = 1
regular_int = 1, static_int = 2
regular_int = 1, static_int = 3
regular_int = 1, static_int = 4
regular_int = 1, static_int = 5
regular_int = 1, static_int = 6
regular_int = 1, static_int = 7
regular_int = 1, static_int = 8
regular_int = 1, static_int = 9
regular_int = 1, static_int = 10

https://github.com/bonigarcia/c-programming/blob/master/variables/static.c

5. Static variables
• We can also use the static keyword for implementing encapsulation

in module (i.e., access restriction):
− Static global variables are not visible outside of the file they are defined in
− Static functions are not visible outside of the C file they are defined in

Systems Architecture - 4. Modular programming in C 28

#include <stdio.h>
#include "person.h"
#include "job.h"

static Job company[MAX_JOBS];

int main() {
// ...

return 0;
}

For instance, this variable
can only be used in this

file (even if other files try
to access with extern)

Table of contents
1. Introduction
2. The preprocessor
3. Modularity
4. Static variables
5. Takeaways

Systems Architecture - 4. Modular programming in C 29

6. Takeaways
• The C preprocessor is a used automatically by the C compiler to expand

macros (e.g. #include, #define) or conditional compiling (e.g. #ifded,
#ifndef)

• GCC allows defining macros in the command line using the option -D (e.g., for
debugging)

• For modular programs in C, we need to separate the logic into headers (.h)
and source (.c) files

• Header files (.h) will contain functions declarations, global structures, and
macro definitions, while source files (.c) will contain the function definitions

• The make tool reads the instructions defined in a file called Makefile (also
known as descriptor file) to compile, execute or clean C programs

• Static variables (defined with the keyword static) in C are initialized only
once

Systems Architecture - 4. Modular programming in C 30

	Systems Architecture
	Table of contents
	1. Introduction
	Table of contents
	2. The preprocessor
	2. The preprocessor
	2. The preprocessor
	2. The preprocessor
	2. The preprocessor
	2. The preprocessor
	Table of contents
	3. Modularity
	3. Modularity
	3. Modularity
	3. Modularity
	3. Modularity
	3. Modularity
	3. Modularity
	3. Modularity
	3. Modularity
	Table of contents
	4. Makefile
	4. Makefile
	4. Makefile
	4. Makefile
	Table of contents
	5. Static variables
	5. Static variables
	Table of contents
	6. Takeaways

