
Systems Architecture
3. Input/Output in C

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. Basic I/O functions
3. Other I/O functions
4. File access
5. Takeaways

Systems Architecture - 3. Input/Output in C 2

1. Introduction
• In C programming:

− Input means to get some data from a source into a program
−Output means to put some data from a program to a target
− Sources and targets can be devices (e.g., keyboard, screen, printer)

or files (e.g. /home/user/myfile)
−Devices are treated as files (and so, I/O in C deals always with files)

Systems Architecture - 3. Input/Output in C 3

C program

Input Output

1. Introduction
• There are 3 standard streams in C (typically used with the shell):

Systems Architecture - 3. Input/Output in C 4

Name File Device Description

Standard input stdin Keyboard Default input stream (text from the keyboard
typed by an user)

Standard output stdout Screen Default output stream (text written to the
screen to be read by an user)

Standard error stderr Screen Default output stream for errors (text written
to the screen to be read by an user)

C program
stdin

stdout

stderr

Table of contents
1. Introduction
2. Basic I/O functions

− Standard output: printf
− Standard input: scanf

3. Other I/O functions
4. File access
5. Takeaways

Systems Architecture - 3. Input/Output in C 5

2. Basic I/O functions - Standard output: printf
• The printf function writes a formatted string to the

standard output
−The printf function (and the rest of I/O functions we see) is

defined in the stdio.h library
−printf is a variadic function, and its prototype is as follows:

Systems Architecture - 3. Input/Output in C 6

int printf(const char *format, ...);

return
type

function
name parameters

Total number of
characters printed
(usually we do not

use this return type)

The first parameter
(mandatory) is the string

to be written in the
standard output

The following arguments
(optional) are used to format

the string with custom
values

2. Basic I/O functions - Standard output: printf
• The string to be written in the standard output with printf can be

formatter using format specifiers (the symbol % followed a character)
to convert different types:

Systems Architecture - 3. Input/Output in C 7

#include <stdio.h>

int main() {
char string[] = "Hello world";

printf("%s\n", string);

return 0;
}

Hello world

https://github.com/bonigarcia/c-programming/blob/master/io/printf_1.c

2. Basic I/O functions - Standard input: scanf
• The scanf function reads data from the standard input according to

the format provided
− The format specifiers used with printf are also used with scanf to specify

different types (integers, strings, characters, etc.) to be read
− The prototype of scanf is:

Systems Architecture - 3. Input/Output in C 8

int scanf(const char *format, ...);

On success, the function returns the number of
items of the argument list successfully read. If a

reading error happens, then EOF is returned. EOF
stands for “End of File” an it is a keyword in C

reserved to determine the end of a file

The varargs parameters in scanf need to be
pointers, because the changes made inside the

function scanf are reflected in caller parameters

2. Basic I/O functions - Standard input: scanf

Systems Architecture - 3. Input/Output in C 9

#include <stdio.h>

int main() {
char str[40];

printf("Enter a string: ");
scanf("%s", str);

printf("You entered: %s\n", str);

return 0;
}

Enter a string: hello
You entered: hello

Enter a string: hello world
You entered: hello

In order to read a complete line,
other functions (such as fgets or

readline) are preferred

• Basic example using scanf:

https://github.com/bonigarcia/c-programming/blob/master/io/scanf_1.c

2. Basic I/O functions - Standard input: scanf

Systems Architecture - 3. Input/Output in C 10

#include <stdio.h>

int main() {
char str[40];
int i;

printf("Enter a string and an integer: ");
scanf("%s %d", str, &i);

printf("You entered: %s %d\n", str, i);

return 0;
}

Enter a string and an integer: hello 100
You entered: hello 100

• Another example using scanf:

https://github.com/bonigarcia/c-programming/blob/master/io/scanf_2.c

2. Basic I/O functions - Standard input: scanf

Systems Architecture - 3. Input/Output in C 11

• The scanf function work using arguments passed by reference:

• For this reason, when we invoke scanf for basic types (e.g. char,
int, etc.), we need to use the reference operator (&)

int i;
char str[40];

scanf("%d", &i);
scanf("%s", str);

int scanf(const char *format, ...);

The varargs parameters in scanf need to be
pointers, because the changes made inside the

function scanf are reflected in caller parameters

https://github.com/bonigarcia/c-programming/blob/master/io/scanf_2.c

2. Basic I/O functions - Standard input: scanf

Systems Architecture - 3. Input/Output in C 12

• Another example using scanf:
#include <stdio.h>

int main() {
int i, res;

printf("Enter an integer: ");
res = scanf("%d", &i);

if (res == EOF) {
printf("You sent EOF\n");

} else {
printf("You entered: %d\n", i);

}

return 0;
}

Enter an integer: ^D
You sent EOF

EOF can be typed by a user in
the shell using Ctrl+D in Unix-

like systems

https://github.com/bonigarcia/c-programming/blob/master/io/scanf_3.c

Table of contents
1. Introduction
2. Basic I/O functions
3. Other I/O functions

− Handling characters: getchar and putchar
− Handling lines: gets and puts
− Handling lines: fgets
− Handling lines: readline
− Handling lines: scanf
− Writing strings: sprintf
− Examples

4. File access
5. Takeaways

Systems Architecture - 3. Input/Output in C 13

3. Other I/O functions - Handling characters: getchar and putchar

• The functions to read and write characters in C:

Systems Architecture - 3. Input/Output in C 14

Prototype Description

int getchar(void); Read a character (only one) from the standard input and returns it as an integer

int putchar(int c); Write a character (only one) to the standard output (and returns the same character)

#include <stdio.h>

int main() {
printf("Enter a character: ");
char ch = getchar();

printf("You entered: ");
putchar(ch);

return 0;
}

Enter a character: c
You entered: c

Enter a character: hello
You entered: h

Only a character is
actually read

https://github.com/bonigarcia/c-programming/blob/master/io/getchar_and_putchar.c

3. Other I/O functions - Handling lines: gets and puts
• Other functions to read and write strings are:

Systems Architecture - 3. Input/Output in C 15

Prototype Description

char *gets(char *str); Read a string from the standard input until a terminating newline

int puts(const char *str); Writes a string plus a newline to the standard output

Enter a string: hello
You entered: hello

Enter a string: hello and bye
You entered: hello and bye

gets_and_puts.c: In function ‘main’:
gets_and_puts.c:7:5: warning: implicit
declaration of function ‘gets’; did you mean
‘fgets’? [-Wimplicit-function-declaration]

7 | gets(str);
| ^~~~
| fgets

/usr/bin/ld: /tmp/ccKHJUYZ.o: in function
`main':
gets_and_puts.c:(.text+0x39): warning: the
`gets' function is dangerous and should not be
used.

We get a warning when
compiling this program

since the gets function is
deprecated in favor to
fgets (since it protects

from buffer overflow
problems)

#include <stdio.h>
#define MAX 80

int main() {
char str[MAX];
printf("Enter a string: ");
gets(str);

printf("You entered: ");
puts(str);

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/io/gets_and_puts.c

3. Other I/O functions - Handling lines: fgets
• The function fgets reads a line from the specified file and

stores it into the string pointed to by a pointer
−Prototype:
− It stops when either (n-1) characters are read, the newline

character is read, or the end-of-file is reached, whichever comes
first

Systems Architecture - 3. Input/Output in C 16

char *fgets(char *str, int n, FILE *f);

This examples reads a string
from the standard input

(stdin), and then, this string is
written on the standard output

Enter line: Hello world!
You entered: Hello world!

#include <stdio.h>
#define MAX 80

int main() {
char str[MAX];
printf("Enter a string: ");
fgets(str, MAX, stdin);

printf("You entered: ");
puts(str);

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/io/readline_fgets.c

3. Other I/O functions - Handling lines: readline
• Another function to read strings from a file (e.g. the input

stream) is getline:

Systems Architecture - 3. Input/Output in C 17

Prototype Description

int *getline(char **lineptr, size_t *n,
FILE *stream);

Reads an entire line from stream, storing the text (including
the newline and a terminating null character) in a buffer

Enter a line: hello
6 characters were read
You entered: hello

#include <stdio.h>
#define MAX 80

int main() {
char str[MAX];
size_t bufsize = MAX;
char *buffer = str;

printf("Enter a string: ");
getline(&buffer, &bufsize, stdin);

printf("You entered: ");
puts(str);

return 0;
}

getline is that is not
available in some gcc

compilers (e.g., in
Windows)

https://github.com/bonigarcia/c-programming/blob/master/io/readline_getline.c

3. Other I/O functions - Handling lines: readline
• getline uses a double pointer as a first argument since it

dynamically allocates memory for the buffer

Systems Architecture - 3. Input/Output in C 18

#include <stdio.h>
#include <stdlib.h>

int main() {
char *line = NULL; // Pointer to store the buffer
size_t len = 0; // Initial size of the buffer
int read; // Number of characters read

printf("Enter a string: ");
read = getline(&line, &len, stdin);
printf("You entered %d characters (%ld bytes): %s\n", read, len, line);

free(line); // Free buffer (dynamic memory)

return 0;
}

We will study
dynamic memory

in unit 6

https://github.com/bonigarcia/c-programming/blob/master/io/readline_getline_2.c

3. Other I/O functions - Handling lines: scanf
• We can also use to read string lines from the user
• For that, we need a special format specifier with a regular expression

(regex)
− A regular expression is a sequence of characters that is used to search pattern

Systems Architecture - 3. Input/Output in C 19

Enter line: hi there
You entered: hi there

#include <stdio.h>
#define MAX 80

int main() {
char buffer[MAX];

printf("Enter line: ");
scanf("%[^\n]", buffer);

printf("You entered: %s\n", buffer);

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/io/readline_scanf.c

3. Other I/O functions - Writing strings: sprintf
• The C library function sprintf sends formatted output to a string

(pointed by str)

Systems Architecture - 3. Input/Output in C 20

#include <stdio.h>
#define MAX 80

int main() {
int n;
printf("Enter your age: ");
scanf("%d", &n);

char str[MAX];
sprintf(str, "You are %d years old", n);
puts(str);

return 0;
}

Enter your age: 20
You are 20 years old

int sprintf(char *str, const char *format, ...);

https://github.com/bonigarcia/c-programming/blob/master/io/sprintf.c

3. Other I/O functions - Examples

Systems Architecture - 3. Input/Output in C 21

#include <stdio.h>
#include <ctype.h>

int main() {
char ch;

for (;;) { // Infinite loop
printf("Insert character (q to exit): ");
scanf("%c", &ch); // equivalent to: ch = getchar();

if (tolower(ch) == 'q') {
puts("Goodbye!");
break;

}

printf("\tYou entered: %c\n", ch);
}

return 0;
}

Insert character (q to exit): q
Goodbye!

• The following program asks for some character to the user:

Insert character (q to exit): hello
You entered: h

Insert character (q to exit): You entered: e
Insert character (q to exit): You entered: l
Insert character (q to exit): You entered: l
Insert character (q to exit): You entered: o
Insert character (q to exit): You entered:

The function
tolower converts

a character to
lowercase

https://github.com/bonigarcia/c-programming/blob/master/io/scanf_5_error.c

3. Other I/O functions - Examples

Systems Architecture - 3. Input/Output in C 22

• When reading consecutive characters from the standard
input, we need to consider that perhaps there are more
characters waiting to be read in the input buffer:

hello↵

For instance, the user
types the word hello
and then press enter

The first character is read with:
scanf("%c", &ch);

Rest of the characters are
waiting to be read

C
program

3. Other I/O functions - Examples

Systems Architecture - 3. Input/Output in C 23

#include <stdio.h>
#include <ctype.h>
#include <string.h>

#define MAX_STR 80

int main() {
char ch;
char input[MAX_STR];

for (;;) { // Infinite loop
printf("Insert character (q to exit): ");

fgets(input, MAX_STR, stdin); // Read a complete line from the user
input[strlen(input) - 1] = '\0'; // Remove trailing carriage return

printf("\tYou entered: %s (%ld characters)\n", input, strlen(input));

ch = input[0]; // Get only the first character of the input
if (tolower(ch) == 'q' && strlen(input) == 1) {

puts("Goodbye!");
break;

}

}

return 0;
}

• A convenient solution
to this problem is to
read a complete line
and then get the first
character:

https://github.com/bonigarcia/c-programming/blob/master/io/scanf_5_sol1.c

3. Other I/O functions - Examples

Systems Architecture - 3. Input/Output in C 24

#include <stdio.h>

int main() {
int i;

for (;;) { // Infinite loop
printf("Enter an option from 1 to 7 (8 for exit): ");
scanf("%i", &i);

if (i > 0 && i < 8) {
printf("You entered %d\n", i);

} else if (i == 8) {
puts("Goodbye!");
break;

} else {
puts("Wrong option");

}
}

return 0;
}

Enter an option from 1 to 7 (8 for exit): 1
You entered 1
Enter an option from 1 to 7 (8 for exit): 8
Goodbye!

• The following program asks for some number to the user:

Enter an option from 1 to 7 (8 for exit): hello
Wrong option
Enter an option from 1 to 7 (8 for exit): Wrong option
Enter an option from 1 to 7 (8 for exit): Wrong option
Enter an option from 1 to 7 (8 for exit): Wrong option
Enter an option from 1 to 7 (8 for exit): Wrong option
Enter an option from 1 to 7 (8 for exit): Wrong option
Enter an option from 1 to 7 (8 for exit): Wrong option
...

This input doesn't match the
format string and scanf leaves
the invalid input in the buffer

https://github.com/bonigarcia/c-programming/blob/master/io/scanf_6_error.c

3. Other I/O functions - Examples

Systems Architecture - 3. Input/Output in C 25

• A convenient solution
to this problem is to
read a line and convert
it to integer using the
function atoi

#include <stdio.h>
#include <stdlib.h>

int main() {
int i;
int bufsize = 80;
char buffer[bufsize];

for (;;) { // Infinite loop
printf("Enter an option from 1 to 7 (8 for exit): ");
fgets(buffer, bufsize, stdin);
i = atoi(buffer);

if (i > 0 && i < 8) {
printf("You entered %d\n", i);

} else if (i == 8) {
puts("Goodbye!");
break;

} else {
puts("Wrong option");

}
}

return 0;
}

atoi converts a string
(1st argument) to an
integer (type int)

https://github.com/bonigarcia/c-programming/blob/master/io/scanf_6_sol1.c

Table of contents
1. Introduction
2. Basic I/O functions
3. Other I/O functions
4. File access

- Access modes
- Functions
- Write text file
- Read text file
- Read formatted text file
- End of file: feof

5. Takeaways

Systems Architecture - 3. Input/Output in C 26

4. File access
• The typical procedure to read/write text files in C is:

1. Declare a FILE pointer which represents the file in C.
Internally, FILE is an struct that contains information about
the file stream:

2. Open the file using fopen (this function will return the file
descriptor)

3. Perform read or write operations
4. Close the file using fclose:

Systems Architecture - 3. Input/Output in C 27

FILE *fp;

FILE *fopen(const char *filename, const char *mode);

int fclose(FILE *fp);

These
steps can

be done in
the same

line

4. File access - Access modes
• The following table summarizes the access modes for text files:

Systems Architecture - 3. Input/Output in C 28

Mode Description Behavior

r Open for reading If the file does not exist, fopen() returns NULL

w Open for writing If the file exists, its contents are overwritten.
If the file does not exist, it is created

a Open for append (new data is
added to the end of the file) If the file does not exist, it is created

r+ Open for both reading and
writing If the file does not exist, fopen() returns NULL

w+ Open for both reading and
writing

If the file exists, its contents are overwritten.
If the file does not exist, it is created

a+ Open for both reading and
appending If the file does not exist, it is created

For binary files,
we obtain the
same behavior

using the modes:
rb, wb, ab, rb+,

wb+, ab+

4. File access - Functions
• The following functions are used to read and write text from/to files:

Systems Architecture - 3. Input/Output in C 29

Prototype Description

int fgetc(FILE *fp); Reads and returns a single character at a time from a file. It returns EOF
(end of file) when there are no more characters

char *fgets(char *buf,
int max, FILE *fp);

Reads a line from the file. It stops when either (n-1) characters are read,
the newline character is read, or EOF is reached

int fscanf(FILE *fp,
const char *format,...); Reads formatted input from a file (same as scanf but from a file)

int fputc(int ch, FILE
*fp); Writes a single character into a file

int fputs(const char
*str, FILE *fp); Writes a text line into a file

int fprintf(FILE *fp,
const char *format, ...); Write formatted text from a file (same as printf but from a file)

read

write

4. File access - Write text file
• Basic example for

writing a text file:

Systems Architecture - 3. Input/Output in C 30

#include <stdio.h>
#include <stdlib.h>

int main() {
FILE *fp = fopen("file.txt", "w");
if (fp == NULL) {

fputs("Error opening file", stderr);
exit(1);

}

// Write a line to the file
fputs("I am writing into the file", fp);

int i;
printf("Enter integer: ");
scanf("%d", &i);

// Write another line to the file
fprintf(fp, "You entered: %d\n", i);

fclose(fp);

return 0;
}

The function exit
terminates the program

returning a given exit
code (1 this example)

https://github.com/bonigarcia/c-programming/blob/master/io/file_write.c

4. File access - Read text file
• Basic example for

reading a text file line
by line:

Systems Architecture - 3. Input/Output in C 31

#include <stdio.h>
#include <stdlib.h>
#define MAX 255

int main() {
FILE *fp = fopen("file.txt", "r");
if (fp == NULL) {

fputs("Error opening file", stderr);
exit(EXIT_FAILURE);

}

char buffer[MAX];
while (fgets(buffer, MAX, fp) != NULL) {

printf("%s", buffer);
}

fclose(fp);

return EXIT_SUCCESS;
}

This example uses the macros
EXIT_FAILURE (value 1) and
EXIT_SUCCESS (value 0)

defined in the standard library
stdlib.h for the exit code

https://github.com/bonigarcia/c-programming/blob/master/io/file_read_1.c

4. File access - Read formatted text file
• Basic example for reading a formatted text file:

Systems Architecture - 3. Input/Output in C 32

#include <stdio.h>
#include <stdlib.h>

int main() {
FILE *fp = fopen("data.txt", "r");
if (fp == NULL) {

fputs("Error opening file", stderr);
exit(1);

}

char name[80];
int age;

while (fscanf(fp, "%s is %d years old\n", name, &age) != EOF) {
printf("Name: %s -- Age: %d\n", name, age);

}

fclose(fp);

return 0;
}

Alice is 24 years old
Bob is 31 years old
Charles is 12 years old

data.txt

fscanf.c

https://github.com/bonigarcia/c-programming/blob/master/io/fscanf.c

4. File access - End of file: feof
• The function feof tests the EOF for the given stream
• Its prototype is as follows:

Systems Architecture - 3. Input/Output in C 33

int feof(FILE *fp);

It returns a non-zero value
(i.e., true) when EOF is
reached, else zero (i.e.,

false) is returned

4. File access - End of file: feof
• Basic example using feof:

Systems Architecture - 3. Input/Output in C 34

#include <stdio.h>
#include <stdlib.h>
#define MAX 255

int main() {
FILE *fp = fopen("data.txt", "r");
if (fp == NULL) {

fputs("Error opening file", stderr);
exit(1);

}

char buffer[MAX];
while (!feof(fp)) {

fgets(buffer, sizeof(buffer), fp);
printf("%s", buffer);

}

fclose(fp);

return 0;
}

Alice is 24 years old
Bob is 31 years old
Charles is 12 years old
Charles is 12 years old

The problem is the
feof function only

returns true after we
tried to read past the

end of the file

Possible solutions:
1. Avoid feof (use other conditions to check EOF)
2. Double check the output of feof (see example)

https://github.com/bonigarcia/c-programming/blob/master/io/feof_1.c
https://github.com/bonigarcia/c-examples/blob/master/io/feof_2.c

Table of contents
1. Introduction
2. Basic I/O functions
3. Other I/O functions
4. File access
5. Takeaways

Systems Architecture - 3. Input/Output in C 35

5. Takeaways
• In C programming, there are 3 standard streams (typically used

in conjunction with the shell):
1. Standard input (stdin): Messages typed from the keyboard
2. Standard output (stdout): Messages displayed on the screen
3. Standard error (stderr): Error messages displayed on the screen

• Input/Output (I/O) functions (defined in stdio.h) are used to:
−To read data from files (or devices, also treated as files) using input

functions (such as scanf, to read text from the standard input)
−To write data to files (or devices) using output functions (such as
printf, to write text to the standard output)

Systems Architecture - 3. Input/Output in C 36

	Systems Architecture
	Table of contents
	1. Introduction
	1. Introduction
	Table of contents
	2. Basic I/O functions - Standard output: printf
	2. Basic I/O functions - Standard output: printf
	2. Basic I/O functions - Standard input: scanf
	2. Basic I/O functions - Standard input: scanf
	2. Basic I/O functions - Standard input: scanf
	2. Basic I/O functions - Standard input: scanf
	2. Basic I/O functions - Standard input: scanf
	Table of contents
	3. Other I/O functions - Handling characters: getchar and putchar
	3. Other I/O functions - Handling lines: gets and puts
	3. Other I/O functions - Handling lines: fgets
	3. Other I/O functions - Handling lines: readline
	3. Other I/O functions - Handling lines: readline
	3. Other I/O functions - Handling lines: scanf
	3. Other I/O functions - Writing strings: sprintf
	3. Other I/O functions - Examples
	3. Other I/O functions - Examples
	3. Other I/O functions - Examples
	3. Other I/O functions - Examples
	3. Other I/O functions - Examples
	Table of contents
	4. File access
	4. File access - Access modes
	4. File access - Functions
	4. File access - Write text file
	4. File access - Read text file
	4. File access - Read formatted text file
	4. File access - End of file: feof
	4. File access - End of file: feof
	Table of contents
	5. Takeaways

