
Systems Architecture
2. Basics of C programming

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. Functions
3. Operators
4. Control flow
5. Arrays
6. Strings
7. Structured data
8. Top-down design
9. Takeaways

Systems Architecture - 2. Basics of C programming 2

1. Introduction
• In this lecture, we continue learning the foundations of the C

programming language
• In particular, we study the following:

− Functions
− Operators
− Control flow
− Arrays
− Strings
− Structured data (structs and unions)
− Top-down design

Systems Architecture - 2. Basics of C programming 3

Table of contents
1. Introduction
2. Functions

- Variadic

3. Operators
4. Control flow
5. Arrays
6. Strings
7. Structured data
8. Top-down design
9. Takeaways

Systems Architecture - 2. Basics of C programming 4

2. Functions
• The code written in a C program is divided into functions

− Although similar to Java methods, C functions are not embedded in classes
− A C function is defined by a name, parameter(s), and result type

Systems Architecture - 2. Basics of C programming 5

result_type name(param1_type param1, ..., paramN_type paramN) {
/*
* Function body
*/
return <value>;

}

void name(param1_type param1, ..., paramN_type paramN) {
/*
* Function body
*/

} If the function is declared
as void, it does not return

any value

2. Functions
• Example of a very basic function:

Systems Architecture - 2. Basics of C programming 6

#include <stdio.h>

int sum(int a, int b) {
return a + b;

}

int main() {
int i = 1;
int j = 2;

printf("%d + %d = %d\n", i, j, sum(i, j));
return 0;

}

1 + 2 = 3

https://github.com/bonigarcia/c-programming/blob/master/functions/functions_1.c

2. Functions
• The order matters in C: the function declaration needs to be add

before the first call of the function

Systems Architecture - 2. Basics of C programming 7

#include <stdio.h>

int main() {
int i = 1;
int j = 2;

printf("%d + %d = %d\n", i, j, sum(i, j));
return 0;

}

int sum(int a, int b) {
return a + b;

}

functions_2.c: In function ‘main’:
functions_2.c:7:36: warning: implicit declaration of function ‘sum’ [-Wimplicit-function-declaration]

7 | printf("%d + %d = %d\n", i, j, sum(i, j));
| ^~~

1 + 2 = 3

https://github.com/bonigarcia/c-programming/blob/master/functions/functions_2.c

2. Functions
• A common practice is to put the function declaration above main()

and the function definition below main()

Systems Architecture - 2. Basics of C programming 8

#include <stdio.h>

int sum(int a, int b); // Function declaration

int main() {
int i = 1;
int j = 2;

printf("%d + %d = %d\n", i, j, sum(i, j));
return 0;

}

int sum(int a, int b) { // Function definition
return a + b;

}

The prototype of a function is the
declaration of its function,

parameters, and return type

https://github.com/bonigarcia/c-programming/blob/master/functions/functions_3.c

2. Functions - Variadic
• Variadic functions are functions (also called varargs functions) can

take a variable number of arguments
• The declaration of a variadic function uses an ellipsis (...) as the last

parameter
• For example, printf is a variadic function, and its prototype is as

follows:

Systems Architecture - 2. Basics of C programming 9

int printf(const char *format, ...);

return
type

function
name parameters

Total number of
characters printed
(we usually do not

use this return type)

The first argument
(mandatory) is the string

to be written in the
standard output

The following arguments
(optional) are used to format

the string with custom
values

2. Functions - Variadic
• The following example illustrates how a variadic function (printf, in

this case) can be invoked
• The examples repository contains another example to create a

custom variadic function

Systems Architecture - 2. Basics of C programming 10

#include <stdio.h>

int main() {
int number = 10;
char character = 'a';

printf("Using printf\n");
printf("Number is %d\n", number);
printf("Number is %d and character is %c\n", number, character);

return 0;
}

Using printf
Number is 10
Number is 10 and character is a

https://github.com/bonigarcia/c-examples/blob/master/functions/variadic_2.c
https://github.com/bonigarcia/c-programming/blob/master/functions/variadic_1.c

Table of contents
1. Introduction
2. Functions
3. Operators

- Arithmetic
- Logical
- Relational
- Bitwise
- Assignment
- Miscellaneous

4. Control flow
5. Arrays
6. Strings
7. Structured data
8. Top-down design
9. Takeaways

Systems Architecture - 2. Basics of C programming 11

3. Operators
• An operator is a symbol that tells the compiler to perform specific

mathematical or logical functions
• The C language provides the following types of operators:

− Arithmetic: to perform basic actions on actions on numbers
− Logical: to evaluate boolean expressions
− Relational: to evaluate the relationship between two arguments
− Bitwise: to perform bit-by-bit operation
− Assignment: to assign a new value to a variable
− Miscellaneous: other operators

Systems Architecture - 2. Basics of C programming 12

3. Operators - Arithmetic

Systems Architecture - 2. Basics of C programming 13

Operator Description Example

+ Addition (adds two operands) 1 + 1

- Subtraction (subtracts second operand
from the first) 2 - 2

* Multiplication (multiplies both
operands) 3 * 4

/ Division (divides numerator by de-
numerator) 5.0 / 4.0

% Modulus (remainder of after an integer
division) 5 % 3

++ Increment (increases the integer value
by one) a++

-- Decrement (decreases the integer value
by one) b--

#include <stdio.h>

int main() {
int sum = 1 + 1;
int subtraction = 2 - 2;
int multiplication = 3 * 4;
float division = 5.0 / 4.0;
int module = 5 % 3;

printf("Sum: %d\n", sum);
printf("Subtraction: %d\n", subtraction);
printf("Multiplication: %d\n", multiplication);
printf("Division: %.2f\n", division);
printf("Module: %d\n", module);
printf("Increment: %d\n", ++sum);
printf("Decrement: %d\n", --sum);

return 0;
}

Sum: 2
Subtraction: 0
Multiplication: 12
Division: 1.25
Module: 2
Increment: 3
Decrement: 2

https://github.com/bonigarcia/c-programming/blob/master/operators/aritmetic.c

3. Operators - Logical

Systems Architecture - 2. Basics of C programming 14

• C does not have a basic type for boolean values, and instead, it uses
integers for logic operations
− 0 means false
− Different than 0 means true

Operator Description Example

&&
Called Logical AND operator. If both the
operands are non-zero, then the
condition becomes true

a && b

||
Called Logical OR Operator. If any of the
two operands is non-zero, then the
condition becomes true

a || b

!

Called Logical NOT Operator. It is used to
reverse the logical state of its operand. If
a condition is true, then Logical NOT
operator will make it false.

!a

3. Operators - Logical

Systems Architecture - 2. Basics of C programming 15

#include <stdio.h>

int main() {
int a = 0;
int b = 10;

if (a && b) {
printf("First condition is true\n");

} else {
printf("First condition is not true\n");

}

if (a || b) {
printf("Second condition is true\n");

}

if (!a) {
printf("Third condition is true\n");

}

return 0;
}

First condition is not true
Second condition is true
Third condition is true

https://github.com/bonigarcia/c-programming/blob/master/operators/logical.c

3. Operators - Logical

Systems Architecture - 2. Basics of C programming 16

• The library stdbool.h defines the type bool and the constants true
and false (but internally, it uses 0 and 1)

True: 1
False: 0

#include <stdio.h>
#include <stdbool.h>

int main() {
bool t = true;
bool f = false;

if (t) {
printf("True: %d\n", t);

}

if (!f) {
printf("False: %d\n", f);

}

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/boolean/bool_1.c

3. Operators - Logical

Systems Architecture - 2. Basics of C programming 17

• Alternatively, we can use custom macros for TRUE and FALSE:

True: 1
False: 0

#include <stdio.h>

#define TRUE 1
#define FALSE 0

int main() {
if (TRUE) {

printf("True: %d\n", TRUE);
}

if (!FALSE) {
printf("False: %d\n", FALSE);

}

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/boolean/bool_2.c

3. Operators - Logical

Systems Architecture - 2. Basics of C programming 18

• Also, we can use a custom boolean type:

True: 1
False: 0

#include <stdio.h>

typedef enum {false = 0, true} boolean;

int main() {
boolean t = true;
boolean f = false;

if (t) {
printf("True: %d\n", t);

}

if (!f) {
printf("False: %d\n", f);

}

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/boolean/bool_3.c

3. Operators - Relational

Systems Architecture - 2. Basics of C programming 19

Operator Description Example

== Checks if the values of two operands are equal or not. If yes, then the
condition becomes true a == b

!= Checks if the values of two operands are equal or not. If the values are not
equal, then the condition becomes true a != b

> Checks if the value of left operand is greater than the value of right operand. If
yes, then the condition becomes true a > b

< Checks if the value of left operand is less than the value of right operand. If
yes, then the condition becomes true a < b

>= Checks if the value of left operand is greater than or equal to the value of right
operand. If yes, then the condition becomes true a >= b

<= Checks if the value of left operand is less than or equal to the value of right
operand. If yes, then the condition becomes true a <= b

3. Operators - Relational

Systems Architecture - 2. Basics of C programming 20

0 > 10 : 0
0 < 10 : 1
0 == 10 : 0
0 != 10 : 1

#include <stdio.h>

int main() {
int a = 0;
int b = 10;

printf("%d > %d : %d\n", a, b, a > b);
printf("%d < %d : %d\n", a, b, a < b);
printf("%d == %d : %d\n", a, b, a == b);
printf("%d != %d : %d\n", a, b, a != b);

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/operators/relational.c

3. Operators - Bitwise

Systems Architecture - 2. Basics of C programming 21

Operator Description Example

& Binary AND (copies a bit to the result if it exists in both operands) a & b

| Binary OR (copies a bit if it exists in either operand) a | b

^ Binary XOR (copies the bit if it is set in one operand but not both) a ^ b

~ Binary one’s complement (flipping' bits) a ~ b

>> Binary left shift operator (the left operands value is moved left by the number
of bits specified by the right operand) a >> b

<< Binary right shift operator (the left operands value is moved right by the
number of bits specified by the right operand) a << b

3. Operators - Bitwise

Systems Architecture - 2. Basics of C programming 22

a 11001001
b 00001011
a&b 00001001

#include <stdio.h>
#include <limits.h>

void print_bin(unsigned char byte) {
int i = CHAR_BIT; // Number of bits in a byte, i.e., 8
while (i--) {

putchar('0' + ((byte >> i) & 1));
}

}

int main() {
int a = 201, b = 11;

printf("a\t");
print_bin(a);
printf("\n");

printf("b\t");
print_bin(b);
printf("\n");

printf("a&b\t");
print_bin(a & b);
printf("\n");

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/operators/bitwise.c

3. Operators - Assignment

Systems Architecture - 2. Basics of C programming 23

Operator Description Example

= Simple assignment operator. Assigns values from right side operands to left side operand C = A + B will assign the value of A + B to C

+= Add AND assignment operator. It adds the right operand to the left operand and assign the
result to the left operand C += A is equivalent to C = C + A

-= Subtract AND assignment operator. It subtracts the right operand from the left operand and
assigns the result to the left operand C -= A is equivalent to C = C - A

*= Multiply AND assignment operator. It multiplies the right operand with the left operand and
assigns the result to the left operand C *= A is equivalent to C = C * A

/= Divide AND assignment operator. It divides the left operand with the right operand and
assigns the result to the left operand C /= A is equivalent to C = C / A

%= Modulus AND assignment operator. It takes modulus using two operands and assigns the
result to the left operand C %= A is equivalent to C = C % A

<<= Left shift AND assignment operator C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator C &= 2 is same as C = C & 2

^= Bitwise exclusive OR and assignment operator C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment operator C |= 2 is same as C = C | 2

3. Operators - Miscellaneous

Systems Architecture - 2. Basics of C programming 24

Operator Description Example

sizeof() Returns the storage size (in bytes) of a variable or type sizeof(int)

& Reference operator (to get the memory address of a variable) &b

* Dereference operator (to declare pointer or get the value of a given
pointer) *b

? : Ternary operator (to run one code when the condition is true and
another code when the condition is false) (a > b) ? c : d

#include <stdio.h>

int main() {
int age = 18;
printf("You age is %d. ", age);
(age >= 18) ? printf("You can vote.\n") : printf("You cannot vote.\n");

int canvote = (age >= 18) ? 1 : 0;
printf("canvote=%d\n", canvote);

return 0;
}

You age is 18. You can vote.
canvote=1

https://github.com/bonigarcia/c-programming/blob/master/operators/ternary.c

Table of contents
1. Introduction
2. Functions
3. Operators
4. Control flow

- if-else
- switch
- while and do-while
- for
- break and continue

5. Arrays
6. Strings
7. Structured data
8. Top-down design
9. Takeaways

Systems Architecture - 2. Basics of C programming 25

4. Control flow
• In computer science, control flow is the order in which the individual

statements of an imperative program are executed or evaluated
• In C programming, there are two types of control flow statements:

− Branching, which is deciding what actions to take
• if-else
• switch

− Looping, which is deciding how many times to take a certain action
• while
• do-while
• for

Systems Architecture - 2. Basics of C programming 26

4. Control flow - if-else
• It takes an expression in parenthesis and an statement or block of

statements
• if the expression is true then the statement or block of statements

gets executed otherwise these statements are skipped (and the else
block, is present, is evaluated)

Systems Architecture - 2. Basics of C programming 27

if (expression) {
...

}
else {

...
}

Remember that C uses integers
for logic operations:
• 0 means false
• Different than 0 means true

4. Control flow - switch
• The switch statement is used to perform different actions based on

different conditions. It is like a nested if-else statement
− The value of the expression is compared with the values of each case
− If there is a match, the associated block of code is executed
− The break statement breaks out of the switch block and stops the execution
− The default (optional) specifies some code to run if there is no case match

Systems Architecture - 2. Basics of C programming 28

switch (expression) {
case value1:
...
break;
case value2:
...
break;
...
default:
...
break;

}

The expression should be
an integer or enumerated

4. Control flow - switch

Systems Architecture - 2. Basics of C programming 29

Enter month number(1-12): 1
31 days

#include <stdio.h>

int main() {
int month;

printf("Enter month number(1-12): ");
scanf("%d", &month);

switch (month) {
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:

printf("31 days\n");
break;

case 4:
case 6:
case 9:
case 11:

printf("30 days\n");
break;

case 2:
printf("28/29 days\n");
break;

default:
printf("Invalid month\n");

}

return 0;
}

The function scanf()
is used to take input

from the user

https://github.com/bonigarcia/c-programming/blob/master/control_flow/switch.c

4. Control flow - while and do-while
• The while loop loops through a block of code as long as a specified

condition is true:

• The do-while loop will execute the code block once, before checking if
the condition is true, then it will repeat the loop as long as the
condition is true:

Systems Architecture - 2. Basics of C programming 30

while (expression) {
...

}

do {
...

} while (expression);

4. Control flow - for
• The for loop iterates a number of times:

Systems Architecture - 2. Basics of C programming 31

for (init_expr; cond_expr; update_expr) {
...

}

#include <stdio.h>

int main() {
int i;

for (i = 0; i < 5; i++) { // iterate i from 0 to 4
printf("%d\n", i);

}
} 0

1
2
3
4

https://github.com/bonigarcia/c-programming/blob/master/control_flow/for.c

4. Control flow - break and continue
• The break statement is used to jump out of a loop:

Systems Architecture - 2. Basics of C programming 32

#include <stdio.h>

int main() {
for (int i = 0; i < 10; i++) {

if (i == 4) {
break;

}
printf("%d\n", i);

}
}

0
1
2
3

https://github.com/bonigarcia/c-programming/blob/master/control_flow/break.c

4. Control flow - break and continue
• The continue statement breaks one iteration in the loop and

continues with the next iteration:

Systems Architecture - 2. Basics of C programming 33

#include <stdio.h>

int main() {
for (int i = 0; i < 10; i++) {

if (i == 4) {
continue;

}
printf("%d\n", i);

}
}

0
1
2
3
5
6
7
8
9

https://github.com/bonigarcia/c-programming/blob/master/control_flow/continue.c

Table of contents
1. Introduction
2. Functions
3. Operators
4. Control flow
5. Arrays
6. Strings
7. Structured data
8. Top-down design
9. Takeaways

Systems Architecture - 2. Basics of C programming 34

#include <stdio.h>

int main() {
int array_1[5]; // declaration
array_1[0] = 100;
array_1[1] = 200;
printf("The value of the position 0 in array_1 is %d\n", array_1[0]);
printf("The value of the position 1 in array_1 is %d\n", array_1[1]);

int array_2[] = { 25, 50, 75, 100 }; // initialization
printf("The value of the position 0 in array_2 is %d\n", array_2[0]);
printf("The value of the position 3 in array_2 is %d\n", array_2[3]);

return 0;
}

5. Arrays
• An array is a collection of the data with the same type and stored at

contiguous memory locations
− We use square brackets [] to create arrays
− We use an index number to access the array elements
− The size of an array is fixed once it is declared

Systems Architecture - 2. Basics of C programming 35

The value of the position 0 in array_1 is 100
The value of the position 1 in array_1 is 200
The value of the position 0 in array_2 is 25
The value of the position 3 in array_2 is 100

https://github.com/bonigarcia/c-programming/blob/master/arrays/arrays_1.c

5. Arrays
• We usually use a for loop to iterate an array, for instance:

Systems Architecture - 2. Basics of C programming 36

#include <stdio.h>
#define SIZE 4

int main() {
int array[SIZE] = { 25, 50, 75, 100 };

for (int i = 0; i < SIZE; i++) {
printf("The value of the position %d in array is %d\n", i, array[i]);

}

return 0;
}

The value of the position 0 in array is 25
The value of the position 1 in array is 50
The value of the position 2 in array is 75
The value of the position 3 in array is 100

https://github.com/bonigarcia/c-programming/blob/master/arrays/arrays_3.c

5. Arrays
• Internally, an array in C is a pointer

− A pointer is a variable that stores the memory address of another variable as
its value

− An array is a pointer that contains the memory address to the 0th element of
the array

Systems Architecture - 2. Basics of C programming 37

int main() {
int value = 10;
int array_1[] = { 25, 50, 75, 100 };

// ...
}

stack (main)

10

value

array_1

25 50 75 100

The stack is the
memory segment which
stores local variables in

runtime

5. Arrays
• Internally, arrays are constant pointers, which means that they can be

initialized (i.e., set value in the declaration) but they cannot be
assigned of another array

Systems Architecture - 2. Basics of C programming 38

#include <stdio.h>
#define SIZE 4

int main() {
int array_1[SIZE] = { 25, 50, 75, 100 };
int array_2[SIZE];

array_2 = array_1; // forbidden

return 0;
}

arrays_5_error.c: In function ‘main’:
arrays_5_error.c:8:13: error: assignment to expression with array type

8 | array_2 = array_1; // forbidden
| ^

https://github.com/bonigarcia/c-programming/blob/master/arrays/arrays_5_error.c

5. Arrays
• To fix the previous error, the memcpy function can be used

− memcpy copies size characters from memory area source to memory area
dest

Systems Architecture - 2. Basics of C programming 39

void *memcpy(void *dest, const void *source, size_t size);

Pointer to the
source of data to

be copied

Number of
bytes to be

copied

Pointer to the
destination where
the content is to

be copied

Pointer to
destination, i.e.,

*dest

5. Arrays

Systems Architecture - 2. Basics of C programming 40

#include <stdio.h>
#include <string.h>
#define SIZE 4

void display_array(int array[], int size) {
for (int i = 0; i < size; i++) {

printf("array[%d]=%d\n", i, array[i]);
}
printf("\n");

}

int main() {
int array_1[SIZE] = { 25, 50, 75, 100 };
int array_2[SIZE];

memcpy(array_2, array_1, sizeof(array_1));

display_array(array_1, SIZE);
display_array(array_2, SIZE);

return 0;
}

array[0]=25
array[1]=50
array[2]=75
array[3]=100

array[0]=25
array[1]=50
array[2]=75
array[3]=100

The operator sizeof
returns the total

number of bytes of
array_1

https://github.com/bonigarcia/c-programming/blob/master/pointers/arrays_5_fixed.c

Table of contents
1. Introduction
2. Functions
3. Operators
4. Control flow
5. Arrays
6. Strings

- Comparison
- Assignment
- Length
- Enumerated types

7. Structured data
8. Top-down design
9. Takeaways

Systems Architecture - 2. Basics of C programming 41

6. Strings
• In programming, a string is a sequence of characters
• Unlike many other programming languages, C does not have a native

type to create string variables
• Instead, we use the char type to create an array of characters to handle

strings in C
• We can use double quotes (" ") to initialize strings in C (called strings

literals)

Systems Architecture - 2. Basics of C programming 42

#include <stdio.h>

int main() {
char greetings[] = "Hello";
printf("%s\n", greetings);
return 0;

}

Hello

https://github.com/bonigarcia/c-programming/blob/master/strings/basic_string_1.c

6. Strings
• Internally, each string in C (i.e., an array of characters) ends in an

special character known as the null terminating character
− We represent the null terminating character in C as '\0' (equivalent to 0 in

decimal)

Systems Architecture - 2. Basics of C programming 43

stack (main)

greetings

H e l l o \0

int main() {
char greetings[] = { 'H', 'e', 'l', 'l', 'o', '\0' };

// ...

return 0;
}

An equivalent way to define an string would be
using an array of characters, using single quotes
(' ') instead of double quotes (" "), but this

way is much less readable, and so, it is not
recommended

int main() {
char greetings[] = "Hello";
// ...

return 0;
}

https://github.com/bonigarcia/c-examples/blob/master/strings/basic_string_2.c

6. Strings
• Since arrays are internally pointers, we can also use the operator * to

declare strings in C
− But unlike when defining string literals with [], the strings declared using *

are immutable (i.e., we cannot change its value in runtime) since they are
stored in the read-only data segment

Systems Architecture - 2. Basics of C programming 44

stack (main)

greetings

H e l l o \0

rodata
The read-only data segment
(rodata) contains data that

cannot be changed in
runtime

int main() {
char *greetings = "Hello";
// ...
return 0;

}

https://github.com/bonigarcia/c-examples/blob/master/strings/basic_string_3.c

6. Strings
• To manipulate strings, we can use the functions defined in the standard

library <string.h>
• Some of the most relevant functions defined in this library are:

Systems Architecture - 2. Basics of C programming 45

Prototype Description

int strcmp(const char *str1, const char *str2) Compares two strings character by character. If the strings are equal,
the function returns 0

char *strcpy(char *dest, const char *source); Copies the string pointed by the source (2nd argument) to the
destination (1st argument)

size_t strlen(const char *str) Calculates the length of a given string

char *strcat(char *dest, const char *source); Concatenates the destination string (2nd argument) and the source
string (1st argument), and the result is stored in the destination string

char *strtok(char *str, const char *delim); Breaks an string (1st argument) into a series of tokens using some
delimiter (2nd argument)

void *memset(void *str, int character, size_t
size);

Copies some character (2nd argument) to the first number of
characters (3rd argument) of a string (1st argument)

6. Strings - Comparison
• Basic types can be compared using the == operator in C. For instance,

characters:

Systems Architecture - 2. Basics of C programming 46

#include <stdio.h>

int main() {
char character1 = 'a';
char character2 = 'a';

if (character1 == character2) {
printf("'%c' and '%c' are EQUAL\n", character1, character2);

}

return 0;
}

'a' and 'a' are EQUAL

https://github.com/bonigarcia/c-programming/blob/master/strings/strcmp_1.c

6. Strings - Comparison

Systems Architecture - 2. Basics of C programming 47

#include <stdio.h>

int main() {
char str1[] = "hello";
char str2[] = "hello";

if (str1 == str2) {
printf("\"%s\" and \"%s\" are EQUAL\n", str1, str2);

}

return 0;
} Can we use the comparator

operator to compare strings
as well?

https://github.com/bonigarcia/c-programming/blob/master/strings/strcmp_2.c

6. Strings - Comparison
• We must use strcmp for comparing strings in C:

Systems Architecture - 2. Basics of C programming 48

#include <stdio.h>
#include <string.h>

int main() {
char str1[] = "hello";
char str2[] = "hello";

// strcmp returns 0 when both strings are equal
if (strcmp(str1, str2) == 0) {

printf("\"%s\" and \"%s\" are EQUAL\n", str1, str2);
}

return 0;
}

"hello" and "hello" are EQUAL

https://github.com/bonigarcia/c-programming/blob/master/strings/strcmp_3.c

6. Strings - Assignment
• String can be initialized (i.e., we can assign a value of an string

variable when it is declared)
• But we cannot do an string assignment once it is declared:

Systems Architecture - 2. Basics of C programming 49

#include <stdio.h>

#define SIZE 80

int main() {
char greetings[SIZE];
greetings = "Hello";

printf("%s\n", greetings);

return 0;
}

error_string.c: In function 'main':
error_string.c:7:15: error: assignment to expression with array type

7 | greetings = "Hello";
| ^

https://github.com/bonigarcia/c-programming/blob/master/strings/error_string.c

6. Strings - Assignment
• To do string assignment, we use the function strcpy:

Systems Architecture - 2. Basics of C programming 50

#include <stdio.h>
#include <string.h>

#define SIZE 80

int main() {
char greetings[SIZE];
strcpy(greetings, "Hello");

printf("%s\n", greetings);

return 0;
}

Hello

https://github.com/bonigarcia/c-programming/blob/master/strings/strcpy_1.c

6. Strings - Length
• We can try to use the operator sizeof to calculate the length of an

string, for instance:

Systems Architecture - 2. Basics of C programming 51

#include <stdio.h>

int main() {
char greetings[] = "Hello";
printf("%s\n", greetings);
size_t size = sizeof(greetings) / sizeof(char);

printf("The size of the greetings string is %ld\n", size);

return 0;
}

What is the value of the
variable size in this

example?

https://github.com/bonigarcia/c-programming/blob/master/strings/strlen_1.c

6. Strings - Length
• To calculate the length of an string in C (without counting the null-

terminating character), we use strlen:

Systems Architecture - 2. Basics of C programming 52

#include <stdio.h>
#include <string.h>

int main() {
char str[] = "hello";
size_t str_length = strlen(str);
size_t str_size = sizeof(str) / sizeof(char);

printf("The string \"%s\" has a length of %ld characters\n", str,
str_length);

printf("The string \"%s\" is stored in an array of %ld positions\n", str,
str_size);

return 0;
}

The string "hello" has a length of 5 characters
The string "hello" is stored in an array of 6 positions

https://github.com/bonigarcia/c-programming/blob/master/strings/strlen_1.c

typedef enum {
ON, OFF

} key;

int main() {
key my_key = ON;
// TODO 1: how to convert my_key to string?

char *my_string = "off";
// TODO 2: how to convert my_string to enum?

return 0;
}

6. Strings - Enumerated types
• As we know, enumerated types (enum) are a useful way to define a

set of named integer constants
• However, C does not natively provide a native way to convert an enum

value to its corresponding string representation (the name of the
enumerator) or to convert a string back to the corresponding enum
value

Systems Architecture - 2. Basics of C programming 53

For example. How to convert these
enumerated types to string and vice

versa?

To achieve this, we have to manually
implement these conversions

6. Strings - Enumerated types

Systems Architecture - 2. Basics of C programming 54

#include <stdio.h>
#include <string.h>

typedef enum {
ON, OFF

} key;

typedef struct {
key key;
char *str;

} key_converter;

key_converter key_conv_arr[] = { { ON, "on" }, { OFF, "off" } };

key str2key(char *str) {
for (int i = 0; i < sizeof(key_conv_arr) / sizeof(key_conv_arr[0]); i++) {

if (strcmp(str, key_conv_arr[i].str) == 0) {
return key_conv_arr[i].key;

}
}
return OFF; // Default value

}

char* key2str(key key) {
return key_conv_arr[key].str;

}

int main() {
key my_key = ON;
// TODO 1: how to convert my_key to string?

char *my_string = "off";
// TODO 2: how to convert my_string to enum?

// Solution 1:
char *my_key_as_string = key2str(my_key);
printf("1. Original enum: %d -- string value: %s\n", my_key,

my_key_as_string);

// Solution 2:
key my_string_as_enum = str2key(my_string);
printf("2. Original string: %s -- enum value: %d\n", my_string,

my_string_as_enum);

return 0;
}

1. Original enum: 0 -- string value: on
2. Original string: off -- enum value: 1

https://github.com/bonigarcia/c-programming/blob/master/strings/strlen_1.c

Table of contents
1. Introduction
2. Functions
3. Operators
4. Control flow
5. Arrays
6. Strings
7. Structured data

- Structs
- Unions

8. Top-down design
9. Takeaways

Systems Architecture - 2. Basics of C programming 55

7. Structured data - Structs
• Structures (also called structs) are a way to group several related

variables into the same variable

Systems Architecture - 2. Basics of C programming 56

#include <stdio.h>

struct my_struct {
int num;
char letter;

};

int main() {
struct my_struct s1;

s1.num = 10;
s1.letter = 'A';

printf("My number: %d\n", s1.num);
printf("My letter: %c\n", s1.letter);

return 0;
}

− Unlike an array, a structure can contain
different data types (int, char, etc.)

− Each variable in the structure is known as
a member of the structure

− We use the struct keyword to create
structures. We declare its members inside
curly braces

− We use the dot syntax (.) to access the
members of a structure

My number: 10
My letter: A

https://github.com/bonigarcia/c-programming/blob/master/structured_data/struct_1.c

7. Structured data - Structs
• We can use the keyword typedef to declare a type for an structure:

Systems Architecture - 2. Basics of C programming 57

#include <stdio.h>

typedef struct {
int num;
char letter;

} my_structure;

int main() {
my_structure s1 = { 10, 'A' };

printf("My number: %d\n", s1.num);
printf("My letter: %c\n", s1.letter);

return 0;
}

My number: 10
My letter: A

We can assign values to
members of a structure

variable at declaration time,
in a single line in a comma-
separated list inside curly

braces {}

https://github.com/bonigarcia/c-programming/blob/master/structured_data/struct_2.c

#include <stdio.h>

union job {
float salary;
int id;

};

int main() {
union job my_job;

my_job.salary = 50000.0;

my_job.id = 55;

printf("Worker id = %d\n", my_job.id);
printf("Salary = %.1f\n", my_job.salary);

return 0;
}

7. Structured data - Unions
• A union is a user-defined type similar to structs in C except for one key

difference: structures allocate enough space to store all their
members, whereas unions can only hold one member value at a time

Systems Architecture - 2. Basics of C programming 58

− We use the union keyword to create
unions. We declare its members
inside curly brackets (braces)

− Unions provide an efficient way of
using the same memory location for
multiple-purpose, since all members
share the same memory

− Unions are used to save memory
(e.g., in embedded systems) or when
only some member is required at a
time

Worker id = 55
Salary = 0.0

When my_job.id is
assigned a value,

my_job.salary will no
longer hold 50000.0

https://github.com/bonigarcia/c-programming/blob/master/structured_data/union_1.c

#include <stdio.h>

#define MAX_STR 80

struct data_1 {
int integer;
char str[MAX_STR];

};

union data_2 {
int integer;
char str[MAX_STR];

};

int main() {
struct data_1 d1;
union data_2 d2;

printf("The size of data_1 is %ld\n", sizeof(d1));
printf("The size of data_2 is %ld\n", sizeof(d2));

return 0;
}

7. Structured data - Unions
• The size of the union is based on the size of the largest member of

the union

Systems Architecture - 2. Basics of C programming 59

The size of data_1 is 84
The size of data_2 is 80

https://github.com/bonigarcia/c-programming/blob/master/structured_data/union_2.c

Table of contents
1. Introduction
2. Functions
3. Operators
4. Control flow
5. Arrays
6. Strings
7. Structured data
8. Top-down design
9. Takeaways

Systems Architecture - 2. Basics of C programming 60

8. Top-down design
• Structured programming languages (such as C) typically uses a design

principle called top-down
• In the top-down design, the general aspects of a program are broken

down into smaller components or functions
− The development process starts by identifying the high-level functions or

main components of the program
− After establishing the high-level structure, the top-down approach involves

progressively refining each part of the system into more specific and detailed
sub-components or functions

• The top-down approach encourages modularity by breaking the
system into manageable pieces or modules

Systems Architecture - 2. Basics of C programming 61

8. Top-down design

Systems Architecture - 2. Basics of C programming 62

#include <stdio.h>

void display_menu();
void borrow_book();
void return_book();
void view_books();

int main() {
int choice;
do {

display_menu();
printf("Enter your choice: ");
scanf("%d", &choice);

switch (choice) {
case 1:

borrow_book();
break;

case 2:
return_book();
break;

case 3:
view_books();
break;

case 4:
printf("Exiting the library system.\n");
break;

default:
printf("Invalid choice. Please try again.\n");

}

} while (choice != 4);

return 0;
}

void display_menu() {
printf("Library Management System\n");
printf("1. Borrow Book\n");
printf("2. Return Book\n");
printf("3. View Books\n");
printf("4. Exit\n");

}

void borrow_book() {
printf("Borrowing a book...\n");
// Implementation details will be added later

}

void return_book() {
printf("Returning a book...\n");
// Implementation details will be added later

}

void view_books() {
printf("Viewing all books...\n");
// Implementation details will be added later

}

https://github.com/bonigarcia/c-programming/blob/master/top-down/main.c

Table of contents
1. Introduction
2. Functions
3. Operators
4. Control flow
5. Arrays
6. Strings
7. Structured data
8. Top-down design
9. Takeaways

Systems Architecture - 2. Basics of C programming 63

9. Takeaways
• A C function is defined by a name, parameter(s), and result type
• There are different types of operators in C: arithmetic, logical, relational, bitwise, assignment,

and miscellaneous
• There is no boolean type in C. Instead, we use 0 for false and different than 0 for true
• There are two types of control flow statements in C: branching (if-else , switch) and

looping (while , do-while , for)
• Arrays are collection of the data with the same type and stored at contiguous memory
• C does not have a native type to create string variables, instead, arrays of characters are used
• Structures (or structs) allows to group several related variables into the same variable
• Unions are similar to structs although unions can only hold one member value at a time
• The top-down approach in programming is a design methodology where the general aspects

of a system are broken down into smaller components or functions

Systems Architecture - 2. Basics of C programming 64

	Systems Architecture
	Table of contents
	1. Introduction
	Table of contents
	2. Functions
	2. Functions
	2. Functions
	2. Functions
	2. Functions - Variadic
	2. Functions - Variadic
	Table of contents
	3. Operators
	3. Operators - Arithmetic
	3. Operators - Logical
	3. Operators - Logical
	3. Operators - Logical
	3. Operators - Logical
	3. Operators - Logical
	3. Operators - Relational
	3. Operators - Relational
	3. Operators - Bitwise
	3. Operators - Bitwise
	3. Operators - Assignment
	3. Operators - Miscellaneous
	Table of contents
	4. Control flow
	4. Control flow - if-else
	4. Control flow - switch
	4. Control flow - switch
	4. Control flow - while and do-while
	4. Control flow - for
	4. Control flow - break and continue
	4. Control flow - break and continue
	Table of contents
	5. Arrays
	5. Arrays
	5. Arrays
	5. Arrays
	5. Arrays
	5. Arrays
	Table of contents
	6. Strings
	6. Strings
	6. Strings
	6. Strings
	6. Strings - Comparison
	6. Strings - Comparison
	6. Strings - Comparison
	6. Strings - Assignment
	6. Strings - Assignment
	6. Strings - Length
	6. Strings - Length
	6. Strings - Enumerated types
	6. Strings - Enumerated types
	Table of contents
	7. Structured data - Structs
	7. Structured data - Structs
	7. Structured data - Unions
	7. Structured data - Unions
	Table of contents
	8. Top-down design
	8. Top-down design
	Table of contents
	9. Takeaways

