
Systems Architecture
1. Introduction to C

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. “Hello world” in C
3. The build process
4. Data types
5. Variables
6. Constants
7. Code style
8. Takeaways

Systems Architecture - 1. Introduction to C 2

Table of contents
1. Introduction

- Main features of C
- General-purpose vs domain-specific
- Application and system programming
- Programming language levels
- Compiled vs. interpreted
- Programming paradigms
- Type system

2. “Hello world” in C
3. The build process
4. Data types
5. Variables
6. Constants
7. Code style
8. Takeaways

Systems Architecture - 1. Introduction to C 3

1. Introduction
• C is a general purpose programming language developed by Dennis Ritchie

between 1969 and 1972 at Bell Laboratories
− Originally C was oriented to the implementation of operating systems, specifically Unix

(with Ken Thompson)
− It was first standardized by the ANSI (American National Standards Institute) in 1989
− It was ratified as an ISO (International Organization for Standardization) standard in

1990

Systems Architecture - 1. Introduction to C 4

Source: Dennis Ritchie biography by Moisés Cuevas

Source: Wikipedia
https://en.wikipedia.org/wiki/Dennis_Ritchie

https://en.wikipedia.org/wiki/Dennis_Ritchie

1. Introduction
• Today C is still one of the most widely used languages

Systems Architecture - 1. Introduction to C 5

https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

1. Introduction
• C is considered the foundation of modern programming languages

Systems Architecture - 1. Introduction to C 6

© Image created by Hugo Tobio
Source: Bonilista nº 647, 3 September 2023, La Historia del lenguaje C

https://twitter.com/HugoTobio
https://us2.campaign-archive.com/?u=374c664073e1a1fa3deca53b4&id=5bda3a57ad

1. Introduction - Main features of C
• The C programming language can be classified in several ways:

− C is a general-purpose programming language
• C can be used both application programming and system programming

− C is a high-level programming language
• Although it allows certain low level handling (direct memory access)
• For that reason, it is sometimes classified as a medium-level language

− C is a compiled language (the C source code must be converted into machine
code to be executed)

− C is imperative (based on statements that are executed sequentially) and
procedural (it relies on subroutines called functions to perform computations)

− C is statically-typed (the type of a variable is known at compile-time) and
weakly-typed (it allows variables of one type to be used as if they were of
another)

Systems Architecture - 1. Introduction to C 7

1. Introduction - General-purpose vs domain-specific
• A general-purpose language (GPL) is a programming language that can

create all types of programs
− For instance: C, Java, Python, among others
− GPLs are Turing complete, which means that they can theoretically solve any

computational problem

• A domain-specific language (DSL) is a computer language specialized
to a particular application domain

− For instance: MATLAB (intended primarily for numeric computing), SQL (for
relational database queries), VHDL (for hardware description)

− DSLs can be (or not) Turing complete

Systems Architecture - 1. Introduction to C 8

1. Introduction - Application and system programming
• An applications programming language is used for implementing user

applications, like desktop applications, command-line interface tools,
or mobile apps

− For instance: C, Java, Python, JavaScript, and others
− Application software generally don’t directly access hardware or low-level

resources. Instead these languages use system calls

• A system programming language is used for implementing system
software, i.e., software designed to provide a platform for other
software, such as operating systems, devices drivers, or server-side
components

− For instance: C, C++, Go, Rust, and others
− Unlike application software, most system software are not directly used by end

users

Systems Architecture - 1. Introduction to C 9

1. Introduction - Programming language levels

Systems Architecture - 1. Introduction to C 10

High level program

Machine code

#include <stdio.h>

int main() {
printf("Hello world\n");
return 0;

}

public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World");

}

}

It provides abstractions (close to the
natural language) independent of a

particular type of computer.
Programmer friendly, portable, easier

to create, debug, and maintain

Low-level program (assembly)
org 0x100 ; .com files always start 256 bytes into the segment

mov dx, msg ; the address of or message in dx
mov ah, 9 ; ah=9 - "print string" sub-function
int 0x21 ; call dos services

mov ah, 0x4c ; "terminate program" sub-function
int 0x21 ; call dos services

msg db 'Hello, World!', 0x0d, 0x0a, '$' ; $-terminated message

Mnemonics that represent basic
instructions that can be directly

translated to machine code. Highly
memory efficient but non-portable
and much more difficult to create,

debug, and maintain

Executable code (1’s and 0’s). Each
instruction causes the CPU to

perform a specific task (e.g. load
value, arithmetic operation, etc.)

1010101110101011111010101010101010101011010101010101010101010110101
1101110000110100010101010010101010101011010001010101010101010110101

1. Introduction - Compiled vs. interpreted
• Compiled languages need a build step, i.e., they need to be manually

compiled to be executed on a computer
− This process is sometimes called ahead-of-time (AOT) compilation
− Examples of pure compiled languages are C, C++, Erlang, Haskell, Rust, and Go

Systems Architecture - 1. Introduction to C 11

Source code
#include <stdio.h>

int main() {
printf("Hello world\n");
return 0;

}

Machine code
101010111010101111101010101
010101010101101010101010101
010101011010111011100001101
000101010100101010101010110
100010101010101010101101011

Compilation

Compile-time

Machine code
101010111010101111101010101
010101010101101010101010101
010101011010111011100001101
000101010100101010101010110
100010101010101010101101011

Runtime

1. Introduction - Compiled vs. interpreted
• Interpreted languages are executed directly into machine-language

instructions without a previous compilation

− Nevertheless, there are few implementations of pure interpreted languages
nowadays, because interpreting source code directly would be quite slow

Systems Architecture - 1. Introduction to C 12

Source code Machine code
101010111010101111101010101
010101010101101010101010101
010101011010111011100001101
000101010100101010101010110
100010101010101010101101011

Interpretation

Runtime

1. Introduction - Compiled vs. interpreted
• Instead, modern interpreted languages use an alternative approach

called just-in-time (JIT)
− JIT involves the compilation during execution of a program (at runtime) rather

than before execution
− Different optimizations are done in runtime to provide a better performance
− Examples of interpreted languages using JIT are Python, JavaScript, or Ruby

Systems Architecture - 1. Introduction to C 13

Source code Machine code
101010111010101111101010101
010101010101101010101010101
010101011010111011100001101
000101010100101010101010110
100010101010101010101101011

Compilation +
optimization

Runtime

Java Virtual Machine

1. Introduction - Compiled vs. interpreted
• Other languages, like Java, use a mixed strategy:

1. Compile-time: Compilation of the source code into some intermediate
format called bytecode

2. Runtime: bytecodes are interpreted (also using JIT) in the Java Virtual
Machine (JVM)

Systems Architecture - 1. Introduction to C 14

Source code Byte code

10101011101
01011111010
10101010101
01010110101
01010101010

Compilation

Compile-time

Machine code

Runtime

public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World");

}

}

Byte code

10101011101
01011111010
10101010101
01010110101
01010101010

Interpretation
10101011101
01011111010
10101010101
01010110101
01010101010

1. Introduction - Programming paradigms
• Programming paradigms are a way to classify programming languages

based on their features
• The two major programming paradigms nowadays are:

Systems Architecture - 1. Introduction to C 15

Imperative
Programs are based on

statements (or commands) that
are executed sequentially

Procedural
It relies on procedures (or
subroutines) to perform

computations

Object-oriented
It relies on objects (entities
with an state and behavior)

to implement programs

Declarative
Programs describe their desired
results without explicitly listing

the commands or steps that must
be performed

Functional
Programs are constructed by

applying and composing
functions

Logic
Programs are based on

formal logic rules and facts

1. Introduction - Type system

Systems Architecture - 1. Introduction to C 16

• In programming, a type is a set of value (e.g. integers, characters, etc.)
• The rules that applies for types in a given programming languages is called

type system, and it is usually classified as static or dynamic, and as
strongly-typed or weakly-typed

The type of a variable is
known at compile-time.
Type checking (i.e., the
process of verifying and

enforcing the constraints of
types on values) occurs

before runtime

strongly-typed

weakly-typed

dynamically-typed statically-typed

The type of a variable is
known at runtime.

Type checking occurs
also at runtime

The type system allows
conversions between

unrelated types implicitly

The type system don’t
allow implicit conversions
between unrelated types

C

C++

Java

C# Rust
Groovy

Ruby
Python

PHP

JavaScript
Perl

Table of contents
1. Introduction
2. “Hello world” in C
3. The build process
4. Data types
5. Variables
6. Constants
7. Code style
8. Takeaways

Systems Architecture - 1. Introduction to C 17

2. “Hello world” in C

• The main() function is used by convention as the entry point of the
program

Systems Architecture - 1. Introduction to C 18

#include <stdio.h>

int main() {
printf("Hello world\n");
return 0;

}

https://github.com/bonigarcia/c-programming
Repository with code

examples

hello_world.c

https://github.com/bonigarcia/c-programming
https://github.com/bonigarcia/c-programming/blob/master/hello_world/hello.c

2. “Hello world” in C

• Statements end with semicolons ;
• We define blocks of statements in curly brackets (braces) { }
• The printf() function displays a text string in the standard output (stdout)
• To use that function, we need to include its code from the standard library stdio.h

using the directive #include
• With return we terminate the function, returning a value to the calling process

− The exit code is a numerical value returned by a program to the operating system upon its
completion

− The exit code 0 means success. Different than 0 means some error (e.g., 1 means general error)

Systems Architecture - 1. Introduction to C 19

#include <stdio.h>

int main() {
printf("Hello world\n");
return 0;

}

https://github.com/bonigarcia/c-programming/blob/master/hello_world/hello.c

2. “Hello world” in C

Systems Architecture - 1. Introduction to C 20

gcc hello.c

#include <stdio.h>

int main() {
printf("Hello world\n");
return 0;

}

First, we use the compiler gcc
(GNU Compiler Collection) from the
shell to compile a c program (.c file)

By convention, the generated
executable is called a.out by
default. We can explicitly set a

different binary name using the flag
-o <name>

gcc hello.c -o hello

Compile-time Runtime

./hello

Then, we invoke the
binary name from

the shell to execute it

./a.out

https://github.com/bonigarcia/c-programming/blob/master/hello_world/hello.c

Table of contents
1. Introduction
2. “Hello world” in C
3. The build process
4. Data types
5. Variables
6. Constants
7. Code style
8. Takeaways

Systems Architecture - 1. Introduction to C 21

3. The build process
• The build process in C has actually 4 stages:

Systems Architecture - 1. Introduction to C 22

hello.c hello.i

1. Preprocessing

hello.s

2. Compilation 3. Assembly

hello.o

4. Linkage

hello

Source code
(C language)

Intermediate code
(expanded C

language)

Assembly code
(low-level code)

Object file
(machine-

understandable
code)

Binary file
(executable

code)

3. The build process
1. Preprocessing: The preprocessor converts the source code (.c) into some

intermediate file (.i) doing the following:
− Removing comments
− Expanding macros (expressions defined using the #define directive)
− Expanding included files (include content of files defined using the #include directive)

2. Compilation: The compiler converts the intermediate file into an assembly file
(.s) which has low-level instructions

3. Assembly: The assembler will convert the assembly code into object code (.o)
− Object code holds the translated machine code from the original source code. Object

code is not yet executable because:
• It may contain references to functions or variables that are defined in other object files
• It does not have an entry point required by the operating system to start the program execution

4. Linkage: The linker merges all the object(s) code into a single one (executable)

Systems Architecture - 1. Introduction to C 23

3. The build process
• Others GCC commands:

Systems Architecture - 1. Introduction to C 24

gcc hello.c -o hello -save-temps

gcc hello.c -c -o hello.o Only generates object file (.o)

Generates binary file but does not delete
temporal files (.i, .s, and .o)

gcc hello.c -E -o hello.i Only generates intermediate code (.i)

gcc hello.c -S -o hello.s Only generates assembly code (.s)

gcc hello.c -o hello -Wall
Generates binary file and check all

warnings

Table of contents
1. Introduction
2. “Hello world” in C
3. The build process
4. Data types

- Basic types
- Enumerated types
- Type definitions
- Type conversions

5. Variables
6. Constants
7. Code style
8. Takeaways

Systems Architecture - 1. Introduction to C 25

4. Data types
• A data type defines the set of values for a variable
• There are four groups of data types in C:

Systems Architecture - 1. Introduction to C 26

Basic

Primary data types (integers,
characters, etc.)

Derived

Arrays, unions, structures, and
pointers

Enumerated

Integer values associated to
labels

Void

No value (for functions without
return or generic pointers)

4. Data types - Basic types
• The basic types in C are the following:

Systems Architecture - 1. Introduction to C 27

Data type Description Typical memory
size (in bytes)

Range Format specifier

char Characters with sign 1 -128 to 127 %c

unsigned char Characters without sign 1 0 to 255 %c

short Short integers with sign 2 −32,768 to 32,767 %hi or %hd

unsigned short Short integers without sign 2 0 to 65,535 %hu

int Integers with sign 4 -2,147,483,648 to 2,147,483,647 %i or %d

unsigned int Integers without sign 4 0 to 4,294,967,295 %u

long Long integer with sign 8 -9.2e18 to 9.2e18 %li or %ld

unsigned long Long integer 8 0 to 1.8E19 %lu

float Decimal 4 1.1e-38 to 3.4e38 %f

double Decimal with double precision 8 2.2e-308 0 to 1.7e308 %lf

4. Data types - Basic types
• A character variable holds ASCII value, i.e., an integer number between

0 and 127

Systems Architecture - 1. Introduction to C 28

Source: Wikipedia
https://en.wikipedia.org/wiki/ASCII

https://en.wikipedia.org/wiki/ASCII

4. Data types - Basic types

Systems Architecture - 1. Introduction to C 29

#include <stdio.h>

int main() {
char character = 'c';
int integer = 255;
float float_num = 1.2;
double double_num = 3.1e33;

printf("This is a character: %c\n", character);
printf("This is an integer: %d\n", integer);
printf("This is a float: %f\n", float_num);
printf("This is a double: %g\n", double_num);
printf("This is an integer in hexadecimal: %X\n", integer);

return 0;
}

This is a character: c
This is an integer: 255
This is a float: 1.200000
This is a double: 3.1e+33
This is an integer in hexadecimal: FF

• The first argument in function printf (i.e., a string) can include
format specifiers (i.e., subsequences beginning with %)

− In this case, the additional arguments are formatted and inserted in the
resulting string replacing their respective specifiers

https://github.com/bonigarcia/c-programming/blob/master/types/basic_types.c

4. Data types - Basic types

Systems Architecture - 1. Introduction to C 30

#include <stdio.h>

int main() {
printf("The size of a CHAR is %ld bytes\n", sizeof(char));
printf("The size of a SHORT is %ld bytes\n", sizeof(short));
printf("The size of a INT is %ld bytes\n", sizeof(int));
printf("The size of a LONG is %ld bytes\n", sizeof(long));
printf("The size of a FLOAT is %ld bytes\n", sizeof(float));
printf("The size of a DOUBLE is %ld bytes\n", sizeof(double));

return 0;
}

The size of a CHAR is 1 bytes
The size of a SHORT is 2 bytes
The size of a INT is 4 bytes
The size of a LONG is 4 bytes
The size of a FLOAT is 4 bytes
The size of a DOUBLE is 8 bytes

• The operator sizeof generates the storage size (in bytes) of an
expression or a data type

https://github.com/bonigarcia/c-programming/blob/master/types/sizeof_1.c

4. Data types - Enumerated types
• Enumeration are a user defined data types used to assign names to

integral constants
− These names make a program easy to read and maintain
− The keyword enum is used to declare new enumeration types in C

Systems Architecture - 1. Introduction to C 31

#include <stdio.h>

int main() {
enum days {

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY
};

enum days today = SATURDAY;
enum days tomorrow = SUNDAY;

printf("Today is %d\n", today);
printf("Tomorrow is %d\n", tomorrow);

if (today == SATURDAY || today == SUNDAY) {
printf("It's the weekend!\n");

}

return 0;
}

Today is 5
Tomorrow is 6
It's the weekend!

https://github.com/bonigarcia/c-programming/blob/master/types/enums.c

4. Data types - Type definitions
• The keyword typedef in C allows to create an additional name (alias)

for another data type

Systems Architecture - 1. Introduction to C 32

My character is: d

#include <stdio.h>

int main() {
typedef unsigned char byte;
byte character = 'd';
printf("My character is: %c\n", character);

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/types/typedef.c

4. Data types - Type conversions
• Converting one type explicitly into another is known as type casting

(or type-conversion)
• We convert the values from one type to another explicitly using the

cast operator as follows:

Systems Architecture - 1. Introduction to C 33

(type) expression

#include <stdio.h>

int main() {
int sum = 17, count = 5;
double mean;

mean = (double) sum / count;
printf("Mean: %f\n", mean);

return 0;
}

Mean: 3.400000

https://github.com/bonigarcia/c-programming/blob/master/types/casting.c

4. Data types - Type conversions
• Implicit type conversion is known as type promotion (or coercion)

Systems Architecture - 1. Introduction to C 34

Sum: 66

#include <stdio.h>

int main() {
int i = 1;
char c = 'A'; // The ASCII value of 'A' is 65
int sum;

sum = i + c;
printf("Sum: %d\n", sum);

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/types/promotion_1.c

4. Data types - Type conversions
• Implicit type conversion is known as type promotion (or coercion)

Systems Architecture - 1. Introduction to C 35

65 as a character is A

#include <stdio.h>

int main() {
int i = 65;
char c = i; // 65 is the ASCII value of 'A'

printf("%d as a character is %c\n", i, c);

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/types/promotion_2.c

Table of contents
1. Introduction
2. “Hello world” in C
3. The build process
4. Data types
5. Variables

- Scope
- Shadowing

6. Constants
7. Code style
8. Takeaways

Systems Architecture - 1. Introduction to C 36

5. Variables
• Variables are containers for storing data values
• We distinguish three ways of handling variables:

1. Declaration: statement to specify the variable name and its data type
2. Assignment: set a value to the variable using the operator =
3. Initialization: initial assignment during declaration

Systems Architecture - 1. Introduction to C 37

#include <stdio.h>

int main() {
int a; // declaration
a = 10; // assignment

int b = 10; // initialization

return 0;
}

https://github.com/bonigarcia/c-programming/blob/master/variables/variables_1.c

5. Variables - Scope
• The scope is the range within a program for which an item (e.g., a

variable) is valid (beyond that, it cannot be accessed)
• There are two types of variables depending on its scope:

Systems Architecture - 1. Introduction to C 38

#include <stdio.h>

/*
These are global variables
(multi-line comment)
*/
int a = 1;
int b;

int main() {
int c, d = 2; // local variables
char e;

e = 'z'; // assignments
b = 7;
c = 5;

printf("a=%d b=%d c=%d d=%d e=%c\n", a, b, c, d, e);

return 0;
} a=1 b=7 c=5 d=2 e=z

− Global variables: defined outside a
function, usually on top of the program

− Local variables: defined inside a
function or block. They can be used
only by statements that are inside that
function or block of code

https://github.com/bonigarcia/c-programming/blob/master/variables/variables_2.c

5. Variables - Scope
• We need to be careful with the variable scope. For example:

Systems Architecture - 1. Introduction to C 39

#include <stdio.h>

int main() {
int a = 1;

if (a > 0) {
int b = 2;

printf("a=%d and b=%d\n", a, b);
}

printf("a=%d and b=%d\n", a, b);

return 0;
}

What happen here?

https://github.com/bonigarcia/c-programming/blob/master/variables/scopes_1.c

5. Variables - Shadowing
• Shadowing appears when a variable is defined in a scope with the

same name of another one valid in a higher level scope

Systems Architecture - 1. Introduction to C 40

#include <stdio.h>

int b = 0;

int main() {
int a = 1;

if (a > 0) {
int b = 2;

printf("a=%d and b=%d\n", a, b);
}

printf("a=%d and b=%d\n", a, b);

return 0;
}

What happen here?What happen here?

https://github.com/bonigarcia/c-programming/blob/master/variables/scopes_2.c

Table of contents
1. Introduction
2. “Hello world” in C
3. The build process
4. Data types
5. Variables
6. Constants
7. Functions
8. Code style
9. Takeaways

Systems Architecture - 1. Introduction to C 41

6. Constants
• Constants refer to fixed values that the program may not alter during

its execution. There are different ways to define constants in C:
− Using a macro defined with the preprocessor directive #define
− Using the keyword const
− Using the enumerated types

Systems Architecture - 1. Introduction to C 42

#include <stdio.h>

#define MAX 64

int main() {
const int num = 15;
enum parity {

ODD = 1, EVEN = 2
};

printf("MAX=%d\n", MAX);
printf("num=%d\n", num);
printf("EVEN=%d ODD=%d\n", EVEN, ODD);

return 0;
}

MAX=64
num=15
EVEN=2 ODD=1

https://github.com/bonigarcia/c-programming/blob/master/variables/constants.c

Table of contents
1. Introduction
2. “Hello world” in C
3. The build process
4. Data types
5. Variables
6. Constants
7. Code style
8. Takeaways

Systems Architecture - 1. Introduction to C 43

7. Code style
• Some usual guidelines in C:

− Use meaningful names for variables, constants and functions
− Use snake-case (underscores for multi-word names, e.g. file_name) and not

camel-case (use of capital letter except the initial word, e.g. fileName)
− Use the same indentation level (3 or 4 spaces, or 1 tab)
− Use the same style for opening braces (in the same line or just above)
− Define constants macros in uppercase

• Best practices:
− Avoid code duplication (DRY - Don’t Repeat Yourself)
− Group related functions in a separate module
− Use an automated code formatter, for example:

Systems Architecture - 1. Introduction to C 44

Windows and Linux: Ctrl + Shift + F
macOS: Command + Shift + F

Windows: Shift + Alt + F
Linux: Ctrl + Shift + I
macOS: Shift + Option + F

Table of contents
1. Introduction
2. “Hello world” in C
3. The build process
4. Data types
5. Variables
6. Constants
7. Code style
8. Takeaways

Systems Architecture - 1. Introduction to C 45

8. Takeaways
• C is a programming language: general-purpose, high-level, compiled,

imperative and procedural, statically and weakly-typed
• C programs are organized using procedures called functions. At least,

the function main() should be defined (i.e., the program entry point)
• The build process in C is done with GCC and has 4 steps: preprocessing,

compilation, assembly, and linkage
• There are four groups of data types in C: basic (int, char, etc.),

enumerated (enum), void (void), and derived (arrays, unions,
structures, and pointers)

• Depending its scope, there are two types of variable in C: global
(defined outside a function) and local (defined inside a function or
block)

Systems Architecture - 1. Introduction to C 46

	Systems Architecture
	Table of contents
	Table of contents
	1. Introduction
	1. Introduction
	1. Introduction
	1. Introduction - Main features of C
	1. Introduction - General-purpose vs domain-specific
	1. Introduction - Application and system programming
	1. Introduction - Programming language levels
	1. Introduction - Compiled vs. interpreted
	1. Introduction - Compiled vs. interpreted
	1. Introduction - Compiled vs. interpreted
	1. Introduction - Compiled vs. interpreted
	1. Introduction - Programming paradigms
	1. Introduction - Type system
	Table of contents
	2. “Hello world” in C
	2. “Hello world” in C
	2. “Hello world” in C
	Table of contents
	3. The build process
	3. The build process
	3. The build process
	Table of contents
	4. Data types
	4. Data types - Basic types
	4. Data types - Basic types
	4. Data types - Basic types
	4. Data types - Basic types
	4. Data types - Enumerated types
	4. Data types - Type definitions
	4. Data types - Type conversions
	4. Data types - Type conversions
	4. Data types - Type conversions
	Table of contents
	5. Variables
	5. Variables - Scope
	5. Variables - Scope
	5. Variables - Shadowing
	Table of contents
	6. Constants
	Table of contents
	7. Code style
	Table of contents
	8. Takeaways

