Platforms for Networked Communities

Introduction to Git

Boni Garcia

http://bonigarcia.github.io/
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2020/2021

vcadm | Universidad Carlos lll de Madrid
Q100

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://bonigarcia.github.io/
mailto:boni.garcia@uc3m.es

Platforms for Networked Communities - Introduction to Git

Table of contents

1. Introduction
Git

GitHub
Takeaways

B W N

Platforms for Networked Communities - Introduction to Git

Table of contents

1. Introduction
* What is Git?
 Version control systems
* Development platforms
» References

Platforms for Networked Communities - Introduction to Git

1. Introduction - What is Git?

* According to Wikipedia:

¢¢ Git is a distributed version-control system for tracking changes
in source code during software development 27

* Git was created by Linus Torvalds in 2005 for development of the
Linux kernel

 Git is Free and Open Source Software (FOSS), licensed under the
terms of the GNU General Public License version 2 (GPLv2)

© git

https://git.kernel.org/pub/scm/git/git.git/

https://git.kernel.org/pub/scm/git/git.git/

Platforms for Networked Communities - Introduction to Git

1. Introduction - Version control systems

 Version control is the name given to the process of management of
changes to a collection of information (e.g. source code, documents,
websites, etc.). It allows:
» Keep track who/when made each change (sometimes referred as patch)
* Combine changes made by different people
* Revert contents to a previous state or version

* A Version Control System (VCS) is a tool for managing the version
control process.

* AVCS provides a timestamped and annotated history of changes to the
project, which allows monitoring the changes and facilitate collaboration

* Examples of VCS: Git, CVS, Subversion (SVN), Mercurial

Platforms for Networked Communities - Introduction to Git

1. Introduction - Version control systems

* The are two main types of VCSs:

1. Centralized
e Client-server architecture

 Clients check out the latest snapshot of the resources from a central server
* Examples: CVS, SVN

Client A Server
[file Version database
version 3
|
version 2
Client B !
version 1

il

Platforms for Networked Communities - Introduction to Git

1. Introduction - Version control systems
2. Distributed

* Users mirror the repository, including its full history
* Flexible peer-to-peer architecture (each host can contribute to other

repositories and maintain public repositories in which other can contribute)
* Examples: Git, Mercurial

Client A

Server

file

Version database
version 3
|

version 2
I

version 1

T

Version database

version 3
|

version 2
I

version 1

Client B

file

T

Version database

version 3
I

version 2
I

version 1

Peer B

Peer A

file

T

file

Version database

version 3
I

version 2
I

version 1

Peer C

T

Version database

version 3
I

version 2
I

version 1

file

T

Version database
version 3
I

version 2
I

version 1

Platforms for Networked Communities - Introduction to Git

1. Introduction - Version control systems

Checkins Over Time

e Centralized VCS are delta-based

e Data is stored as changes to a base version of oo, WO ”
each file -G
* Git stores data as data a stream of snapshots =« - =« - = :

* Git stores the state of each file with each commit
(if a files is not changed, Git just a link to the
previous file already stored)

* Each snapshot is stored internally in Git using a
key-value map in which the value is the state of j A 5 "
each file in a commit and the key is a SHA-1 hash
value (40-character string composed of
hexadecimal characters)

» Advantage: fast (network only required for
specific commands)

File B B B Bl B2

Platforms for Networked Communities - Introduction to Git

1. Introduction - Development platforms

* Development platforms are collaborative cloud (web-based)
repository hosting services for creating and sharing software

* These platforms are sometimes referred as code hosting platforms or forges
* These platforms typically provide a social environment for developers

* Some of the most relevant platforms using Git as VCS are:

) GitHub

https://github.com/

A :
Y O Bitbucket

https://about.gitlab.com/

https://about.gitlab.com/
https://github.com/
https://bitbucket.org/

Platforms for Networked Communities - Introduction to Git

1. Introduction - References

e Official Git documentation

e https://git-scm.com/doc
* https://git.wiki.kernel.org/index.php/GitDocumentation

* Pro Git (2"9 edition), Scott Chacon and Bend Straub, Apress, 2014
* https://www.git-scm.com/book/en/v?2

e GitHub guides
e https://guides.github.com/

e Atlassian Git tutorials
* https://www.atlassian.com/git/tutorials

* Git man pages
* http://man7.org/linux/man-pages/manl/git.1.html

https://git-scm.com/doc
https://git.wiki.kernel.org/index.php/GitDocumentation
https://www.git-scm.com/book/en/v2
https://guides.github.com/
https://www.atlassian.com/git/tutorials
http://man7.org/linux/man-pages/man1/git.1.html

Platforms for Networked Communities - Introduction to Git

Table of contents

2. Git

* Terminology

* |Install and initial setup
Create local repository
Cloning a remote repository
Track changes

Other commands

Merging and rebasing
Resolve conflicts

Platforms for Networked Communities - Introduction to Git

2. Git - Terminology

* Repository (or repo) is a collection of files tracked together by Git

* Arepo is remote when is hosted in a server (e.g. GitHub), and it is local when is
stored directly in a user machine

* Clone is to download all files from a remote repository to a local machine
* Fork is a direct copy of a remote repository from a different owner
* Origin is the standard naming convention for a remote repository

e Upstream is the standard naming convention for the original remote
repository of a fork

fork

[

Origin
pull request
cIoneJ |push ertch

Local

Upstream

<
<

Platforms for Networked Communities - Introduction to Git

2. Git - Terminology

A commit is an individual change to a file(s) in the repository. It is identified
with a unique identifier (a hash code generated with SHA-1)

* A branch is a movable pointer to one of these commits
* The master branch is the default branch when creating a Git repository

» Different branches can appoint to divergent path from the main development line
(master) an evolve in parallel

e Git maintains an pointer called HEAD which points to a given branch

* A tagis alabel which points to an specific commit
* Typically used to mark release points (e.g. v1.0.0, v1.0.1, ...)

Platforms for Networked Communities - Introduction to Git

2. Git - Install and initial setup

* First, we need to install Git in our machine:

3
& 0(4 sudo apt-get install git-all
g B sudo dfn install git-all
’

O o . |
.. https.//glt—scm.com/down|Oad/WIn ‘ http://gﬂ-scm_Com/down|oad/mac

* Then, at least we need to configure our user name and email:

git config --global user.name "My Name" We can use the
git config --global user.email myemail@email.com command line to run Git

https://git-scm.com/download/win
http://git-scm.com/download/mac

Platforms for Networked Communities - Introduction to Git

2. Git - Create local repository

* We can create a new repository using the command git init

* This command creates a hidden folder (. git) containing all the
internal data of the repository

boni@ubuntu: $ mkdir hello-world-git
boni@ubuntu: $ cd hello-world-git

boni@ubuntu: $ git init
Initialized empty Git repository in /home/boni/dev/hello-world-git/.git/

* It is very common to use remote repositories hosted in development
platforms (e.g. GitHub, GitLab)

* In the next examples, we will use GitHub

Platforms for Networked Communities - Introduction to Git

2. Git - Cloning a remote repository

* We can clone a remote GitHub repository using HTTPS or SSH
 With HTTPS, our credentials (or a token) are required to make commits
* The use of credentials is going to be deprecated We use the command git clone

* The use of SSH keys is recommended to get a complete copy of the
remote repository

boni@ubuntu: $ git clone git@github.com:bonigarcia/git-intro.git
Cloning into 'git-intro'...

remote: Enumerating objects: 5, done.

remote: Counting objects: 100% (5/5), done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 5 (delta @), reused @ (delta @), pack-reused ©

Receiving objects: 100% (5/5), 5.32 KiB | 5.32 MiB/s, done.

boni@ubuntu: $ cd git-intro

boni@ubuntu: $ git remote -v

origin git@github.com:bonigarcia/git-intro.git (fetch) We use the command git remote
origin git@github.com:bonigarcia/git-intro.git (push) to see the information about the

remote repository

Platforms for Networked Communities - Introduction to Git

2. Git - Track changes

* Once we have cloned a repository, we checkout a given commit,
updating the state of the repository in the working directory

* Git has three states that our files can reside in:
 Committed: data is safely stored in the local repository
* Modified: some file has changed but still is not in the local repository

» Staged: modified file is marked to go into the next commit. Files in this state
are placed in staging area (also known as index)

pull
| v
Remote fetch , Local commit Staging add Working
repository ‘—h repository area directory
pus A

checkout

Platforms for Networked Communities - Introduction to Git

2. Git - Track changes

* The commands we typically use to track changes are:
 git status : Show the state (staged, modified, untracked) of the changes
 git add : mark changes to be committed (staging area)

« git commit -m "message" : confirms changes and stores them in the
local repository

 git log:Show the info of the HEAD commit

- git log --oneline --decorate --graph --all --color:Show tree of
commits (this can be added as alias using the command: git config --global
alias.tree "log --oneline --decorate --graph --all --color")

 git checkout <branch> : Move the position of the HEAD (to the top of a
branch or a given commit, using its hash code)

 git push : Update changes from the local to the remote repository
 git fetch : Update changes from the remote to the local repository
 git pull : Make a fetch from the remote repository and checkout to HEAD

ucam Platforms for Networked Communities - Introduction to Git 19

2. Git - Track changes

* Complete example using the command line:

boni@ubuntu:
On branch master
Your branch is up to date with 'origin/master’.

$ git status

nothing to commit, working tree clean
boni@ubuntu: $ nano README.md
boni@ubuntu: $ git add README.md
boni@ubuntu: $ git commit -m "Update README"
[master 8ffd759] Update README
1 file changed, 1 insertion(+)
boni@ubuntu: $ git log
commit 8ffd759d05aa857e58dc98cceaa254b45elccO17 (HEAD ->
master)
Author: Boni Garcia <boni.garcia@uc3m.es>
Date: Wed Feb 19 17:29:27 2020 +0100

Update README
commit ea24af81f4d98782181e3f84ee26556c534e0e0dc (

)

Author: Boni Garcia <bgarcia@gsyc.es>
Date: Wed Feb 19 13:58:36 2020 +0100

Initial commit

boni@ubuntu: $ git push
Counting objects: 3, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 293 bytes | 293.00 KiB/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local
object.
To github.com:bonigarcia/git-intro.git
ea24af8..8ffd759 master -> master
boni@ubuntu: $ git log
commit 8ffd759d05aa857e58dc98cceaa254b45elccO017 (HEAD ->
master, ,)
Author: Boni Garcia <boni.garcia@uc3m.es>
Date: Wed Feb 19 17:29:27 2020 +0100

Update README
commit ea24af81f4d98782181e3f84ee26556c534e0e0c
Author: Boni Garcia <bgarcia@gsyc.es>

Date: Wed Feb 19 13:58:36 2020 +0100

Initial commit
boni@ubuntu:~/dev/git-intro$

Platforms for Networked Communities - Introduction to Git

2. Git - Track changes

* The same actions can be done using GUI tools:
 git gui : Graphical user interface to trace changes with Git
» gitk : Graphical commit viewer for Git

Git Gui (git-intro) /home/boni/dev/git-intro

Repository Edit Branch Commit Merge Remote Tools Help

Current Branch: master

Unstaged Changes

]
Staged Changes (Will Commit)

Commit Message: # New Commit ™ Amend Last Commit
Rescan | =

Stage Changed
Sign Off

Commit

Push

] =i
Ready.

We can define the spell checking dictionary
using the command: git config --global
gui.spellingdictionary "en"

File Edit View Help

git-intro: All files - gitk

motes/originfmaster] Update README

LTV N 1 S G f fd 7500053385 7e58dc98cceaa254b4!

Find commit |containing:

Search

Boni Garcla <boni.garcia@uc3m 2020-02-19 17:29:27
Boni Garci

a <bgarcia@gsyc.es> 2020-02-19 13:58:36

5elccOl7] JJRUW‘

Diff Old version " New version Lines of context: |3 = Clgr
Author: Boni Garcia <boni.garciaGuc3m.es> 2020-02-19 17:29:27
Committer: Boni Garcia <boni.gar c3m.es> 2020-62-19 17:29:27
Parent: ea24af814d98787181e3784 534eBeBc (Initial commit)
Branches: master, remotes/o

Follows:

Precedes

Update README
READHE. nd

index fc3eab2..71850c1 160634

@ -1,2 +1,3 @@

git-intro

Introduction to Git
[« T Ol

L 2|

Patch ™ Tree
Comments
README.md

Exact o[All fields.|

Platforms for Networked Communities - Introduction to Git

2. Git - Other commands

e Other typical Git commands are:
« git rm:Removes file from the tracked files and working directory

« git remote add <name> <url> :Adds a remote named <name> for the
repository at <ur/>

 git branch <new_branch> : Creates a new local branch

« git checkout -b <new_branch> : Creates and checkouts new branch

 git reset : Restore commit and staged files

« git reset --hard:Restore everything (commit, stage, and working tree)

« git tag <tagname> : Create a tagin the current commit

« git blame <file> : Show revision/author last modified each line of a file

 git diff :Shows the differences between the working version of files and
the version of these files in a particular commit

https://git-scm.com/docs

https://git-scm.com/docs

Platforms for Networked Communities - Introduction to Git

2. Git - Merging and rebasing

e Git use merging and rebasing to integrate changes from different
branches

* The command git merge allows to incorporate commits from one
to another branch

master

} I

git checkout master —>
git merge develop /
—> —> —> —>
. i

T

develop

develop
This creates a new “merge commit” in

the master branch that ties together the
histories of both branches

Platforms for Networked Communities - Introduction to Git

2. Git - Merging and rebasing

* The command git rebase moves an entire branch to begin on the
end of other branch

This re-writes the project history by
creating new commits for each commit

master : -
| in the original branch
git checkout develop
git rebase master
develop mafter
—> —> x —> x —> %

!
develop

Platforms for Networked Communities - Introduction to Git

2. Git - Resolve conflicts

* Centralized VCS (such as CVS or SVN) use locking to avoid conflicts

* Git is more flexible: does not lock files (users can modify in parallel)
and conflicts can happen

* Merge operations (pulling and rebasing) can provoke conflicts

* Conflicts are solved manually by adding the right part of the
conflicting files

<<<<<<< HEAD

this is some content to mess with
content to append

totally different content to merge later
>>>>>>> branch_to_merge

Platforms for Networked Communities - Introduction to Git

Table of contents

3. GitHub

* First steps
* Create new repository
* Create new organization

Platforms for Networked Communities - Introduction to Git

3. GitHub

* GitHub is the largest collaborative development platforms nowadays

* As of January 2020, GitHub reports having over 40 million users and more
than 100 million repositories (including 28 million public repositories)

* In addition to code hosting, GitHub supports other features:
* Documentation, including wikis and README using Markdown formats
* |ssue tracking with labels, milestones, assignees and a search engine
Pull requests with code review and comments
Email notifications (e.g. notifications by @ mentioning them)
GitHub Pages: small websites made from public repositories
GitHub Actions: CI/CD (continuous integration and deployment)

https://octodex.github.com/

https://octodex.github.com/

Platforms for Networked Communities - Introduction to Git

3. GitHub - First steps

* First, we need to create a GitHub account:

O The world's leading software dev X +

« > C & github.com w @ ;

0 Why GitHub? Enterprise Explore Marketplace Pricing /. Signin ‘Sign up‘

Username

Built for

developers

GitHub is a development platform inspired by the
way you work. From open source to business, you S
can host and review code, manage projects, and

build software alongside 40 million developers.
Sign up for GitHub

Make sure it's at least 15 characters OR at least 8 characters including a

By clicking “Sign up for GitHub”, you a to our Terms of Service and

Privacy Statement. We'll cccasionally you account related emails

https://github.com/

https://github.com/

Platforms for Networked Communities - Introduction to Git

3. GitHub - First steps

e Although not mandatory, it is recommended to include a SSH key in
the GitHub account setup
* This way, the process of commit new changes to the repository will be easier
 |f we don’t have a pair of private-public keys, it can generated as follows:

boni@ubuntu: $ ssh-keygen -C boni.garcia@uc3m.es
Generating public/private rsa key pair.

Enter file in which to save the key (/home/boni/.ssh/id rsa):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/boni/.ssh/id_rsa.

Your public key has been saved in /home/boni/.ssh/id rsa.pub.

The key fingerprint is:

SHA256: e+nWMTreQ8yniIWHoXVncTCLd5/KwInOIB1Fsxxpz4I1 boni.garcia@uc3m.es

* Then, we need to copy the content of the public key (~/.ssh/id rsa.pub)
to https://github.com/settings/keys

https://github.com/settings/keys

Platforms for Networked Communities - Introduction to Git

3. GitHub - Create new repository

* We use the button + and the option
“New repository” to create a new
repository in our GitHub account

* This page allows to include several
typical files in the new repository:
« README . md (documentation in
markdown format). More info on

https://guides.github.com/features/
mastering-markdown/

 LICENSE (legal guidelines for the use
and distribution of software)

e .gitignore (files not tracked by Git)

OOOOOO

Description (optional)

Public

Private

Initialize this repository with a README

https://guides.github.com/features/mastering-markdown/

Platforms for Networked Communities - Introduction to Git

3. GitHub - Create new orgamzatlon

* GitHub organizations are shared
accounts where different users
can collaborate in different
repositories

* Owners and administrators can
manage member access to the
organization's data and
repositories

* Organizations are free for open-
source projects

Pick a plan for your team

QP 6]
o e
Team for Open Source Team Enterprise

$ 9 usD $ 2 1 usop
Per user / month Per user / month
tarts 25 and includ users

or teams who don't Advanced collaboration and Security, compliance, and depleyment
need private re positories management tools forteams ~ contro Is for organizations

See pricing details
1+ 2GB of GitHub Packages storage
See pricing details

Platforms for Networked Communities - Introduction to Git

Table of contents

4. Takeaways

Platforms for Networked Communities - Introduction to Git

4. Takeaways

 Git is a popular version control system (i.e., a tool) for tracking changes
in source code during the software development lifecycle

* Git repositories includes the full history (it is agile since network is only
required for specific commands)

* Development platforms (e.g. GitHub) host remote repositories and
provide extra features for collaborative software development

* The typical workflow of Git and GitHub is: create remote repository
(origin) = clone repository = checkout branch (master) 2 commit
changes to local repository = push to origin—=> pull/fetch from origin

* Git can be used completely from the command line (alternatively there
are GUI tools)

	Platforms for Networked Communities
	Table of contents
	Table of contents
	1. Introduction - What is Git?
	1. Introduction - Version control systems
	1. Introduction - Version control systems
	1. Introduction - Version control systems
	1. Introduction - Version control systems
	1. Introduction - Development platforms
	1. Introduction - References
	Table of contents
	2. Git - Terminology
	2. Git - Terminology
	2. Git - Install and initial setup
	2. Git - Create local repository
	2. Git - Cloning a remote repository
	2. Git - Track changes
	2. Git - Track changes
	2. Git - Track changes
	2. Git - Track changes
	2. Git - Other commands
	2. Git - Merging and rebasing
	2. Git - Merging and rebasing
	2. Git - Resolve conflicts
	Table of contents
	3. GitHub
	3. GitHub - First steps
	3. GitHub - First steps
	3. GitHub - Create new repository
	3. GitHub - Create new organization
	Table of contents
	4. Takeaways

