
Platforms for Networked Communities

Introduction to Git

Boni García
http://bonigarcia.github.io/

boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2020/2021

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://bonigarcia.github.io/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. Git
3. GitHub
4. Takeaways

Platforms for Networked Communities - Introduction to Git 2

Table of contents
1. Introduction

• What is Git?
• Version control systems
• Development platforms
• References

2. Git
3. Forges
4. Takeaways

Platforms for Networked Communities - Introduction to Git 3

1. Introduction - What is Git?
• According to Wikipedia:

Git is a distributed version-control system for tracking changes
in source code during software development

• Git was created by Linus Torvalds in 2005 for development of the
Linux kernel

• Git is Free and Open Source Software (FOSS), licensed under the
terms of the GNU General Public License version 2 (GPLv2)

4Platforms for Networked Communities - Introduction to Git

https://git.kernel.org/pub/scm/git/git.git/

https://git.kernel.org/pub/scm/git/git.git/

1. Introduction - Version control systems
• Version control is the name given to the process of management of

changes to a collection of information (e.g. source code, documents,
websites, etc.). It allows:

• Keep track who/when made each change (sometimes referred as patch)
• Combine changes made by different people
• Revert contents to a previous state or version

• A Version Control System (VCS) is a tool for managing the version
control process.

• A VCS provides a timestamped and annotated history of changes to the
project, which allows monitoring the changes and facilitate collaboration

• Examples of VCS: Git, CVS, Subversion (SVN), Mercurial

5Platforms for Networked Communities - Introduction to Git

1. Introduction - Version control systems
• The are two main types of VCSs:
1. Centralized

• Client-server architecture
• Clients check out the latest snapshot of the resources from a central server
• Examples: CVS, SVN

6Platforms for Networked Communities - Introduction to Git

Server

Version database

version 3

version 2

version 1

Client A

file

Client B

file

1. Introduction - Version control systems
2. Distributed

• Users mirror the repository, including its full history
• Flexible peer-to-peer architecture (each host can contribute to other

repositories and maintain public repositories in which other can contribute)
• Examples: Git, Mercurial

7Platforms for Networked Communities - Introduction to Git

Peer A
file

Version database
version 3
version 2
version 1

Peer B
file

Version database
version 3
version 2
version 1

Peer C
file

Version database
version 3
version 2
version 1

Client A
file

Version database
version 3
version 2
version 1

Client B
file

Version database
version 3
version 2
version 1

Server

Version database
version 3
version 2
version 1

1. Introduction - Version control systems
• Centralized VCS are delta-based

• Data is stored as changes to a base version of
each file

• Git stores data as data a stream of snapshots
• Git stores the state of each file with each commit

(if a files is not changed, Git just a link to the
previous file already stored)

• Each snapshot is stored internally in Git using a
key-value map in which the value is the state of
each file in a commit and the key is a SHA-1 hash
value (40-character string composed of
hexadecimal characters)

• Advantage: fast (network only required for
specific commands)

8Platforms for Networked Communities - Introduction to Git

1. Introduction - Development platforms
• Development platforms are collaborative cloud (web-based)

repository hosting services for creating and sharing software
• These platforms are sometimes referred as code hosting platforms or forges
• These platforms typically provide a social environment for developers

• Some of the most relevant platforms using Git as VCS are:

9Platforms for Networked Communities - Introduction to Git

https://about.gitlab.com/

https://github.com/

https://bitbucket.org/

https://about.gitlab.com/
https://github.com/
https://bitbucket.org/

1. Introduction - References
• Official Git documentation

• https://git-scm.com/doc
• https://git.wiki.kernel.org/index.php/GitDocumentation

• Pro Git (2nd edition), Scott Chacon and Bend Straub, Apress, 2014
• https://www.git-scm.com/book/en/v2

• GitHub guides
• https://guides.github.com/

• Atlassian Git tutorials
• https://www.atlassian.com/git/tutorials

• Git man pages
• http://man7.org/linux/man-pages/man1/git.1.html

10Platforms for Networked Communities - Introduction to Git

https://git-scm.com/doc
https://git.wiki.kernel.org/index.php/GitDocumentation
https://www.git-scm.com/book/en/v2
https://guides.github.com/
https://www.atlassian.com/git/tutorials
http://man7.org/linux/man-pages/man1/git.1.html

Table of contents
1. Introduction
2. Git

• Terminology
• Install and initial setup
• Create local repository
• Cloning a remote repository
• Track changes
• Other commands
• Merging and rebasing
• Resolve conflicts

3. GitHub
4. Takeaways

Platforms for Networked Communities - Introduction to Git 11

2. Git - Terminology
• Repository (or repo) is a collection of files tracked together by Git

• A repo is remote when is hosted in a server (e.g. GitHub), and it is local when is
stored directly in a user machine

• Clone is to download all files from a remote repository to a local machine
• Fork is a direct copy of a remote repository from a different owner
• Origin is the standard naming convention for a remote repository
• Upstream is the standard naming convention for the original remote

repository of a fork

12Platforms for Networked Communities - Introduction to Git

Upstream Origin

Local

pull request

fork

pushclone

fetch

fetch

2. Git - Terminology
• A commit is an individual change to a file(s) in the repository. It is identified

with a unique identifier (a hash code generated with SHA-1)
• A branch is a movable pointer to one of these commits

• The master branch is the default branch when creating a Git repository
• Different branches can appoint to divergent path from the main development line

(master) an evolve in parallel
• Git maintains an pointer called HEAD which points to a given branch

• A tag is a label which points to an specific commit
• Typically used to mark release points (e.g. v1.0.0, v1.0.1, …)

13Platforms for Networked Communities - Introduction to Git

masterHEAD

develop

feature

v1.0.0

• First, we need to install Git in our machine:

• Then, at least we need to configure our user name and email:

2. Git - Install and initial setup

14Platforms for Networked Communities - Introduction to Git

sudo dfn install git-all

sudo apt-get install git-all

https://git-scm.com/download/win http://git-scm.com/download/mac

git config --global user.name "My Name"
git config --global user.email myemail@email.com

We can use the
command line to run Git

https://git-scm.com/download/win
http://git-scm.com/download/mac

2. Git - Create local repository
• We can create a new repository using the command git init
• This command creates a hidden folder (.git) containing all the

internal data of the repository

• It is very common to use remote repositories hosted in development
platforms (e.g. GitHub, GitLab)

• In the next examples, we will use GitHub

15Platforms for Networked Communities - Introduction to Git

boni@ubuntu:~/dev$ mkdir hello-world-git
boni@ubuntu:~/dev$ cd hello-world-git
boni@ubuntu:~/dev/hello-world-git$ git init
Initialized empty Git repository in /home/boni/dev/hello-world-git/.git/

2. Git - Cloning a remote repository
• We can clone a remote GitHub repository using HTTPS or SSH

• With HTTPS, our credentials (or a token) are required to make commits
• The use of credentials is going to be deprecated
• The use of SSH keys is recommended

16Platforms for Networked Communities - Introduction to Git

boni@ubuntu:~/dev$ git clone git@github.com:bonigarcia/git-intro.git
Cloning into 'git-intro'...
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 5 (delta 0), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (5/5), 5.32 KiB | 5.32 MiB/s, done.
boni@ubuntu:~/dev$ cd git-intro
boni@ubuntu:~/dev/git-intro$ git remote -v
origin git@github.com:bonigarcia/git-intro.git (fetch)
origin git@github.com:bonigarcia/git-intro.git (push)

We use the command git clone
to get a complete copy of the

remote repository

We use the command git remote
to see the information about the

remote repository

2. Git - Track changes
• Once we have cloned a repository, we checkout a given commit,

updating the state of the repository in the working directory
• Git has three states that our files can reside in:

• Committed: data is safely stored in the local repository
• Modified: some file has changed but still is not in the local repository
• Staged: modified file is marked to go into the next commit. Files in this state

are placed in staging area (also known as index)

17Platforms for Networked Communities - Introduction to Git

Local
repository

Remote
repository

push

fetch Staging
area

Working
directory

checkout

addcommit

pull

2. Git - Track changes
• The commands we typically use to track changes are:

• git status : Show the state (staged, modified, untracked) of the changes
• git add : mark changes to be committed (staging area)
• git commit -m "message" : confirms changes and stores them in the

local repository
• git log : Show the info of the HEAD commit

• git log --oneline --decorate --graph --all --color : Show tree of
commits (this can be added as alias using the command: git config --global
alias.tree "log --oneline --decorate --graph --all --color")

• git checkout <branch> : Move the position of the HEAD (to the top of a
branch or a given commit, using its hash code)

• git push : Update changes from the local to the remote repository
• git fetch : Update changes from the remote to the local repository
• git pull : Make a fetch from the remote repository and checkout to HEAD

18Platforms for Networked Communities - Introduction to Git

2. Git - Track changes
• Complete example using the command line:

19Platforms for Networked Communities - Introduction to Git

boni@ubuntu:~/dev/git-intro$ git status
On branch master
Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean
boni@ubuntu:~/dev/git-intro$ nano README.md
boni@ubuntu:~/dev/git-intro$ git add README.md
boni@ubuntu:~/dev/git-intro$ git commit -m "Update README"
[master 8ffd759] Update README
1 file changed, 1 insertion(+)
boni@ubuntu:~/dev/git-intro$ git log
commit 8ffd759d05aa857e58dc98cceaa254b45e1cc017 (HEAD ->
master)
Author: Boni García <boni.garcia@uc3m.es>
Date: Wed Feb 19 17:29:27 2020 +0100

Update README

commit ea24af81f4d98782181e3f84ee26556c534e0e0c (origin/master,
origin/HEAD)
Author: Boni García <bgarcia@gsyc.es>
Date: Wed Feb 19 13:58:36 2020 +0100

Initial commit

boni@ubuntu:~/dev/git-intro$ git push
Counting objects: 3, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 293 bytes | 293.00 KiB/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local
object.
To github.com:bonigarcia/git-intro.git

ea24af8..8ffd759 master -> master
boni@ubuntu:~/dev/git-intro$ git log
commit 8ffd759d05aa857e58dc98cceaa254b45e1cc017 (HEAD ->
master, origin/master, origin/HEAD)
Author: Boni García <boni.garcia@uc3m.es>
Date: Wed Feb 19 17:29:27 2020 +0100

Update README

commit ea24af81f4d98782181e3f84ee26556c534e0e0c
Author: Boni García <bgarcia@gsyc.es>
Date: Wed Feb 19 13:58:36 2020 +0100

Initial commit
boni@ubuntu:~/dev/git-intro$

2. Git - Track changes
• The same actions can be done using GUI tools:

• git gui : Graphical user interface to trace changes with Git
• gitk : Graphical commit viewer for Git

20Platforms for Networked Communities - Introduction to Git

We can define the spell checking dictionary
using the command: git config --global

gui.spellingdictionary "en"

2. Git - Other commands
• Other typical Git commands are:

• git rm : Removes file from the tracked files and working directory
• git remote add <name> <url> : Adds a remote named <name> for the

repository at <url>
• git branch <new_branch> : Creates a new local branch
• git checkout -b <new_branch> : Creates and checkouts new branch
• git reset : Restore commit and staged files
• git reset --hard : Restore everything (commit, stage, and working tree)
• git tag <tagname> : Create a tag in the current commit
• git blame <file> : Show revision/author last modified each line of a file
• git diff : Shows the differences between the working version of files and

the version of these files in a particular commit

21Platforms for Networked Communities - Introduction to Git

https://git-scm.com/docs

https://git-scm.com/docs

2. Git - Merging and rebasing
• Git use merging and rebasing to integrate changes from different

branches
• The command git merge allows to incorporate commits from one

to another branch

22Platforms for Networked Communities - Introduction to Git

git checkout master
git merge develop

master

develop

master

develop

*

This creates a new “merge commit” in
the master branch that ties together the

histories of both branches

2. Git - Merging and rebasing
• The command git rebase moves an entire branch to begin on the

end of other branch

23Platforms for Networked Communities - Introduction to Git

git checkout develop
git rebase master

master

develop master

develop

*

This re-writes the project history by
creating new commits for each commit

in the original branch

* *

2. Git - Resolve conflicts
• Centralized VCS (such as CVS or SVN) use locking to avoid conflicts
• Git is more flexible: does not lock files (users can modify in parallel)

and conflicts can happen
• Merge operations (pulling and rebasing) can provoke conflicts
• Conflicts are solved manually by adding the right part of the

conflicting files

24Platforms for Networked Communities - Introduction to Git

<<<<<<< HEAD
this is some content to mess with
content to append
=======
totally different content to merge later
>>>>>>> branch_to_merge

Table of contents
1. Introduction
2. Git
3. GitHub

• First steps
• Create new repository
• Create new organization

4. Takeaways

Platforms for Networked Communities - Introduction to Git 25

3. GitHub
• GitHub is the largest collaborative development platforms nowadays

• As of January 2020, GitHub reports having over 40 million users and more
than 100 million repositories (including 28 million public repositories)

• In addition to code hosting, GitHub supports other features:
• Documentation, including wikis and README using Markdown formats
• Issue tracking with labels, milestones, assignees and a search engine
• Pull requests with code review and comments
• Email notifications (e.g. notifications by @ mentioning them)
• GitHub Pages: small websites made from public repositories
• GitHub Actions: CI/CD (continuous integration and deployment)
• …

26Platforms for Networked Communities - Introduction to Git

https://octodex.github.com/

https://octodex.github.com/

3. GitHub - First steps
• First, we need to create a GitHub account:

27Platforms for Networked Communities - Introduction to Git

https://github.com/

https://github.com/

3. GitHub - First steps
• Although not mandatory, it is recommended to include a SSH key in

the GitHub account setup
• This way, the process of commit new changes to the repository will be easier
• If we don’t have a pair of private-public keys, it can generated as follows:

• Then, we need to copy the content of the public key (~/.ssh/id_rsa.pub)
to https://github.com/settings/keys

28Platforms for Networked Communities - Introduction to Git

boni@ubuntu:~/dev$ ssh-keygen -C boni.garcia@uc3m.es
Generating public/private rsa key pair.
Enter file in which to save the key (/home/boni/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/boni/.ssh/id_rsa.
Your public key has been saved in /home/boni/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:e+nWMTreQ8yniIWHoXVncTCLd5/KwJnOIB1Fsxxpz4I boni.garcia@uc3m.es

https://github.com/settings/keys

3. GitHub - Create new repository
• We use the button + and the option

“New repository” to create a new
repository in our GitHub account

• This page allows to include several
typical files in the new repository:

• README.md (documentation in
markdown format). More info on
https://guides.github.com/features/
mastering-markdown/

• LICENSE (legal guidelines for the use
and distribution of software)

• .gitignore (files not tracked by Git)

29Platforms for Networked Communities - Introduction to Git

https://guides.github.com/features/mastering-markdown/

3. GitHub - Create new organization
• GitHub organizations are shared

accounts where different users
can collaborate in different
repositories

• Owners and administrators can
manage member access to the
organization's data and
repositories

• Organizations are free for open-
source projects

30Platforms for Networked Communities - Introduction to Git

Table of contents
1. Introduction
2. Git
3. GitHub
4. Takeaways

Platforms for Networked Communities - Introduction to Git 31

4. Takeaways
• Git is a popular version control system (i.e., a tool) for tracking changes

in source code during the software development lifecycle
• Git repositories includes the full history (it is agile since network is only

required for specific commands)
• Development platforms (e.g. GitHub) host remote repositories and

provide extra features for collaborative software development
• The typical workflow of Git and GitHub is: create remote repository

(origin) clone repository checkout branch (master) commit
changes to local repository push to origin pull/fetch from origin

• Git can be used completely from the command line (alternatively there
are GUI tools)

32Platforms for Networked Communities - Introduction to Git

	Platforms for Networked Communities
	Table of contents
	Table of contents
	1. Introduction - What is Git?
	1. Introduction - Version control systems
	1. Introduction - Version control systems
	1. Introduction - Version control systems
	1. Introduction - Version control systems
	1. Introduction - Development platforms
	1. Introduction - References
	Table of contents
	2. Git - Terminology
	2. Git - Terminology
	2. Git - Install and initial setup
	2. Git - Create local repository
	2. Git - Cloning a remote repository
	2. Git - Track changes
	2. Git - Track changes
	2. Git - Track changes
	2. Git - Track changes
	2. Git - Other commands
	2. Git - Merging and rebasing
	2. Git - Merging and rebasing
	2. Git - Resolve conflicts
	Table of contents
	3. GitHub
	3. GitHub - First steps
	3. GitHub - First steps
	3. GitHub - Create new repository
	3. GitHub - Create new organization
	Table of contents
	4. Takeaways

