
Platforms for Networked Communities

Development Guide

Boni García
http://bonigarcia.github.io/

boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2020/2021

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://bonigarcia.github.io/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. DialogFlow
3. Cloud Source Repositories
4. Cloud Shell
5. Google Cloud SDK
6. Firestore
7. Fulfillment examples
8. Account linkining
9. Local deployment

Platforms for Networked Communities - Development Guide 2

1. Introduction
• The objective of “Platforms for Networked Communities” is to

develop conversational agents using Google Cloud services

3Platforms for Networked Communities - Development Guide

1. Introduction
• There are different alternatives to carry out the development of these

agents:
1. Using the inline editor of DialogFlow
2. Using Cloud Source Repositories

a) Using cloud services
• Cloud Shell (for handling Git and gcloud CLI)
• Cloud Shell Editor (for development)

b) Using local environment (our own laptop)
• Install: Node.js, Git, Google Cloud SDK
• Configure: SSH keys
• Development: preferred IDE or text editor

4Platforms for Networked Communities - Development Guide

• Pro: Very easy to use
• Cons:

• Not control version
• Very limited editor

• Pro: Easy to use
• Cons: Limited editor

• Pro: Custom environment
• Cons: Configuration required

2. DialogFlow
• We can use the inline editor of DialogFlow to develop our agent:

5Platforms for Networked Communities - Development Guide

https://dialogflow.cloud.google.com/

https://dialogflow.cloud.google.com/

3. Cloud Source Repositories
• Cloud Source Repositories are fully featured, private Git

repositories hosted on the GCP
(https://cloud.google.com/source-repositories)

• Instead of using directly the DialogFlow inline editor, we
can these Git repositories to track the changes of our
fulfillment source code

• We can use the GCP console to access Cloud Source
Repositories:

1. Go to https://console.cloud.google.com/ (using our UC3M
account)

2. Select project (uc3m-it-2021-16147-g*)
3. Click on Source Repositories (on left menu, section “Tools”)

6Platforms for Networked Communities - Development Guide

https://cloud.google.com/source-repositories
https://console.cloud.google.com/

3. Cloud Source Repositories
• We can create a new repository in Cloud Source Repositories or

connect with an external repo (e.g. GitHub, BitBucket)

7Platforms for Networked Communities - Development Guide

3. Cloud Source Repositories
• There are different ways of using Cloud Source Repositories:
a) Using online services provided by GCP

• Using the Cloud Shell and the integrated text editor (by GCP)
• Pros: We only need a browser for the development
• Cons: We lack advance capabilities available in IDEs such as autocompletion,

autoformatting to name a few or Git GUI

b) Using our local environment
• Using our shell, our favorite IDE, and so on
• We need to configure our SSH keys in GCP to clone the Cloud Sources

Repository or install Google Cloud SDK (https://cloud.google.com/sdk)
• Pros: We can use advance IDEs (such as Visual Studio Code or other)
• Cons: We need to install different tools (at least Git and Google Cloud SDK)

8Platforms for Networked Communities - Development Guide

https://cloud.google.com/sdk

4. Cloud Shell
• We can use our Cloud Source Repository using the Cloud Shell

(https://cloud.google.com/shell), which is an interactive shell for
managing GCP projects and resources from a web browser

• It provides command-line access to a virtual machine instance in a terminal
window that opens in the web console

• It provides many command-line tools already pre-installed (git, gcloud CLI, …)
• It provides 5 GB of persistent disk storage mounted as our $HOME (this storage is

not shared, i.e. it is different for each user)

• We can enable the Cloud Shell using the GCP console:
1. Go to https://console.cloud.google.com/ (using our UC3M account)
2. Click on the following icon on the top right corner to active the console

9Platforms for Networked Communities - Development Guide

https://cloud.google.com/shell
https://console.cloud.google.com/

4. Cloud Shell

10Platforms for Networked Communities - Development Guide

4. Cloud Shell
• We need to select the way in which we clone our repository:

11Platforms for Networked Communities - Development Guide

For using local environment (option 2b).
A SSH key pair is required For using cloud services (option 2a)

https://docs.oracle.com/en/cloud/cloud-at-customer/occ-get-started/generate-ssh-key-pair.html

4. Cloud Shell
• We can clone our repository using git:

12Platforms for Networked Communities - Development Guide

Welcome to Cloud Shell! Type "help" to get started.
Your Cloud Platform project in this session is set to uc3m-it-2021-16147-g0X.
bogarcia@cloudshell:~ (uc3m-it-2021-16147-g0X)$ git clone
https://source.developers.google.com/p/uc3m-it-2021-16147-teachers/r/myrepo
Cloning into 'myrepo'...
warning: You appear to have cloned an empty repository.
bogarcia@cloudshell:~ (uc3m-it-2021-16147-g0X)$ cd myrepo
bogarcia@cloudshell:~/myrepo (uc3m-it-2021-16147-g0X)$ git config --global user.email
"myemail@alumnos.uc3m.es"
bogarcia@cloudshell:~/myrepo (uc3m-it-2021-16147-g0X)$ git config --global user.name "My name"

We can get this URL
from the help to clone

using manually
generated credentials

The first time using git in the Cloud
Shell, we need to configure our

email and user name

4. Cloud Shell

13Platforms for Networked Communities - Development Guide

• Together with Cloud Shell, we can use the Cloud Shell Editor:

5. Google Cloud SDK
• The Google Cloud SDK is a set of tools and libraries for interacting with

GCP services
• One of these tools is gcloud CLI (Command-Line Interface), and can be

used to deploy our fulfillment as a cloud function
• It replaces Firebase CLI for DialogFlow deployment
• It is already installed in Cloud shell (for option 2a)
• We need to install in local (for option 2b)

14Platforms for Networked Communities - Development Guide

https://cloud.google.com/sdk/docs/install

https://cloud.google.com/sdk/docs/install

5. Google Cloud SDK
• The development of our agent involves:

• index.js: Source code of our fulfillment
• package.json: Project setup and dependencies

• The typical workflow to develop and deploy our fulfillment is using our
local machine (option 2b):

15Platforms for Networked Communities - Development Guide

> git clone ssh://myuser@it.uc3m.es@source.developers.google.com:2022/p/uc3m-it-2021-16147-g0x/r/myrepo
> cd myrepo

> gcloud functions deploy dialogflowFirebaseFulfillment --runtime=nodejs10 --allow-unauthenticated --trigger-http

[development]

[git management]

1. Clone repo

2. Deploy function

5. Google Cloud SDK
• To check the deployment of our cloud function:

1. Open GCP console
(https://console.cloud.google.com/)

2. Select project (uc3m-it-2021-16147-g*)
3. Click on Cloud Functions (on left menu, section

“Compute”)

16Platforms for Networked Communities - Development Guide

https://console.cloud.google.com/

5. Google Cloud SDK
• After deploying correctly a Cloud Function, we can see that new

changes are synchronized in the inline editor of DialogFlow

17Platforms for Networked Communities - Development Guide

The quickest way to test
our agent is using the

“Try it now” field

6. Firestore
• Firebase provides different databases:
1. Realtime Database. Original NoSQL database provided by Firebase
2. Firestore. Successor of the Realtime Database. It provides also NoSQL

storage in 2 modes:
• Native, which allows to handle data using an intuitive approach based on data

structured as collections documents fields. It is the recommended mode
for most the new projects (web, mobile, etc.)

• Datastore, enhancing the native mode (e.g. improve performance, removed
limitations on transactions)

• In our UC3M projects, we will use Firestore in native mode

18Platforms for Networked Communities - Development Guide

https://firebase.google.com/docs/firestore/rtdb-vs-firestore
https://cloud.google.com/firestore/docs/firestore-or-datastore

https://firebase.google.com/docs/firestore/rtdb-vs-firestore
https://cloud.google.com/firestore/docs/firestore-or-datastore

6. Firestore
• In Firestore, the basic unit of storage is the document
• A document is a lightweight record that contains fields, which map to values
• Documents live in collections, which are simply containers for documents

19Platforms for Networked Communities - Development Guide

https://firebase.google.com/docs/firestore/data-model

collection

documents

fields

https://firebase.google.com/docs/firestore/data-model

6. Firestore
• We can see the data in the Firestore console:

1. Go to https://console.cloud.google.com/
2. Select project (uc3m-it-2021-16147-g*)
3. Click on Source Repositories (on left menu, section “Database”)

20Platforms for Networked Communities - Development Guide

https://console.cloud.google.com/

const admin = require("firebase-admin");

// FIXME: Go to IAM & admin > Service accounts in the Cloud Platform Console
// (https://console.cloud.google.com/iam-admin/serviceaccounts) and generate
// a private key and save as as JSON file
const serviceAccount = require("../uc3m-it-2021-16147-teachers-3dce9f913dbc.json");
admin.initializeApp({

credential: admin.credential.cert(serviceAccount)
});

const db = admin.firestore();

// 1. Add data
// https://firebase.google.com/docs/firestore/manage-data/add-data

// 1a. Add a new document with a generated id
let tokyo = {

name: "Tokyo",
country: "Japan"

};
let addDoc = db.collection("cities").add(tokyo).then(ref => {

let tokyoId = ref.id;
console.log("Added document with ID:", tokyoId, tokyo);

// 2. Delete data
// https://firebase.google.com/docs/firestore/manage-data/delete-data
let deleteDoc = db.collection("cities").doc(tokyoId).delete();
console.log("Deleted document with ID:", tokyoId);

});

// ...

6. Firestore
• Example: CRUD (Create

Read Update Delete)
operations using an
standalone script
(outside GCP) in
Node.js using promises

21Platforms for Networked Communities - Development Guide

https://github.com/bonigarcia/nodejs-examples

https://github.com/bonigarcia/nodejs-examples
https://github.com/bonigarcia/nodejs-examples

6. Firestore
• Node.js is a JavaScript runtime which executes code in a single-threaded event

loop (only one piece of code can run at a time)
• There are different alternatives to handle asynchronous (non-blocking)

operations (e.g., call a REST service or filesystem/database operations):

22Platforms for Networked Communities - Development Guide

1. Callbacks
• Callbacks are the functions that are called when a

particular execution gets completed
• Callbacks are registered in task queue, and is executed in

the main event loop when the operation is completed
• Problem: callback hell

2. Promises (introduced in EcmaScript 6)
• Promises are objects which holds the results of an asynchronous function
• Promises are registered in the job queue
• It has 3 states: pending, fulfilled, or rejected

3. Async/await (introduced in EcmaScript 8)
• Syntax sugar (built on top of promises) to simulate asynchronous operations synchronously

const admin = require("firebase-admin");
const serviceAccount = require("../uc3m-it-2021-16147-teachers-3dce9f913dbc.json");
admin.initializeApp({

credential: admin.credential.cert(serviceAccount)
});
const db = admin.firestore();

(async () => {
try {

// 1. Add data
// https://firebase.google.com/docs/firestore/manage-data/add-data
// 1a. Add a new document with a generated id
let tokyo = {

name: "Tokyo",
country: "Japan"

};
let ref = await db.collection("cities").add(tokyo);
let tokyoId = ref.id;
console.log("Added document with ID:", tokyoId, tokyo);

// 2. Delete data
// https://firebase.google.com/docs/firestore/manage-data/delete-data
let deleteDoc = db.collection("cities").doc(tokyoId).delete();
console.log("Deleted document with ID:", tokyoId);

// ...

} catch (error) {
console.error("Error happened:", error);

}
})();

6. Firestore
• Equivalent example but

using async/await

23Platforms for Networked Communities - Development Guide

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/

Statements/async_function

https://github.com/bonigarcia/nodejs-examples
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

7. Fulfillment examples
• The following example shows how to make a call to a REST service

• It’s important to notice that when we make an asynchronous operation in our
handler, we need to return a Promise

24Platforms for Networked Communities - Development Guide

const axios = require("axios").default;
const dateFormat = require("dateformat");

function timeHandler(agent) {
return new Promise((resolve, reject) => {

axios.get("http://worldtimeapi.org/api/timezone/Europe/Madrid")
.then(function (response) {

let time = response.data;
console.log("Time object:", time);
let currentDateTime = dateFormat(time.currentDateTime, "dd/mmmm/yyyy, h:MM:ss");
agent.add("Now its " + currentDateTime);
return resolve();

})
.catch(function (error) {

console.error("Error happened:", error);
return reject(error);

});
});

}

intentMap.set("Time", timeHandler);

"dependencies": {
"dateformat": "^4.1.1",
"axios": "^0.21.1"

}

Axios is promise-based
REST library

https://github.com/bonigarcia/nodejs-examples

7. Fulfillment examples
• The following example makes another call to the same REST service than

before, but using async/await

25Platforms for Networked Communities - Development Guide

const axios = require("axios").default;
const dateFormat = require("dateformat");

async function timeAsyncHandler(agent) {
try {

let response = await axios.get("http://worldtimeapi.org/api/timezone/Europe/Madrid");
let time = response.data;
console.log("Time object:", time);
let currentDateTime = dateFormat(time.currentDateTime, "dd/mmmm/yyyy, h:MM:ss");
agent.add("Now its " + currentDateTime + " (using async/await)");

} catch (error) {
console.error("Error happened:", error);

}
}

intentMap.set("Async Time", timeAsyncHandler);

https://github.com/bonigarcia/nodejs-examples

7. Fulfillment examples
• The following example inserts data in a Firestore collection:

26Platforms for Networked Communities - Development Guide

const functions = require("firebase-functions");
const admin = require("firebase-admin");

admin.initializeApp();
const db = admin.firestore();

async function addCountryHandler(agent) {
try {

// Add data (new document with a generated id)
// https://firebase.google.com/docs/firestore/manage-data/add-data
let country = {

country: agent.parameters["geo-country"],
capital: agent.parameters["geo-capital"]

};
let ref = await db.collection("world").add(country);
let countryId = ref.id;
agent.add("Added country " + country.country + " (capital " + country.capital + ")");
console.log("Added country with id ", countryId, country);

} catch (error) {
console.error("Error happened:", error);

}
}

intentMap.set("Add Country", addCountryHandler);

"dependencies": {
"firebase-admin": "^9.5.0",
"firebase-functions": "^3.13.2",

}

https://github.com/bonigarcia/nodejs-examples

7. Fulfillment examples
• The following example reads data from Firebase:

27Platforms for Networked Communities - Development Guide

async function listCountryHandler(agent) {
try {

// Read data
// https://firebase.google.com/docs/firestore/query-data/get-data
agent.add("List of countries in Firebase");
let world = await db.collection("world").get();
world.forEach(doc => {

agent.add("Country: " + doc.data().country + ", capital: " + doc.data().capital);
});

} catch (error) {
console.error("Error happened:", error);

}
}

intentMap.set("List Countries", listCountryHandler);

https://github.com/bonigarcia/nodejs-examples

7. Fulfillment examples
• The following example deletes data from Firebase:

28Platforms for Networked Communities - Development Guide

async function deleteCountryHandler(agent) {
try {

// Delete data
// https://firebase.google.com/docs/firestore/manage-data/delete-data
let country = agent.parameters["geo-country"];
let capital = agent.parameters["geo-capital"];
let list = await db.collection("world")

.where("country", "==", country)

.where("capital", "==", capital).get();
list.forEach(doc => {

db.collection("world").doc(doc.id).delete();
console.log("Deleted country with id", doc.id);

});
agent.add("Deleted country: " + country + " (" + capital + ")");

} catch (error) {
console.error("Error happened:", error);

}
}

intentMap.set("Delete Country", deleteCountryHandler);

https://github.com/bonigarcia/nodejs-examples

7. Fulfillment examples
• The basic library to create DialogFlow agents with Node.js is called

dialogflow-fulfillment-nodejs
• https://github.com/dialogflow/dialogflow-fulfillment-nodejs

• This library offers the following classes:
• WebhookClient : To be used in the Dialogflow fulfillment webhook logic
• Text : (RichResponses) text response
• Card : (RichResponses) card response
• Image : (RichResponses) image response
• Suggestion : (RichResponses) suggestion response
• Payload : (RichResponses) custom responses (typically for integration)

29Platforms for Networked Communities - Development Guide

To improve the user
experience of our agent, it is
recommended to use
different types of responses

https://github.com/dialogflow/dialogflow-fulfillment-nodejs

7. Fulfillment examples
• The following example shows how to use a Card response:

30Platforms for Networked Communities - Development Guide

const { WebhookClient } = require("dialogflow-fulfillment");
const { Card, Suggestion } = require("dialogflow-fulfillment");

exports.dialogflowFirebaseFulfillment = functions.https.onRequest((request, response) => {
const agent = new WebhookClient({ request, response });

function cardHandler(agent) {
agent.add("This message is from Dialogflow's Cloud Functions!");
agent.add(new Card({

title: "Title: this is a card title",
imageUrl: "https://developers.google.com/assistant/images/badges/XPM_BADGING_GoogleAssistant_VER.png",
text: "This is the body text of a card.",
buttonText: "This is a button",
buttonUrl: "https://assistant.google.com/"

}));
agent.add(new Suggestion("Quick Reply"));
agent.add(new Suggestion("Suggestion"));

}

let intentMap = new Map();
intentMap.set("Card", cardHandler);
agent.handleRequest(intentMap);

});

"dependencies": {
"dialogflow": "^1.2.0",
"dialogflow-fulfillment": "^0.6.1"

}

https://github.com/bonigarcia/nodejs-examples

7. Fulfillment examples
• The library actions-on-google-nodejs allows to interact with Google Assistant

(https://github.com/actions-on-google/actions-on-google-nodejs)

• This example shows how to use a Carousel in Google Assistant:

31Platforms for Networked Communities - Development Guide

const { Carousel } = require("actions-on-google");

function carouselHandler(agent) {
let conv = agent.conv();
conv.ask("Please choose an item:");
conv.ask(new Carousel({
title: "Google Assistant",
items: {
"WorksWithGoogleAssistantItemKey": {
title: "Works With the Google Assistant",
description: "If you see this logo, you know it will work with the Google Assistant.",
image: {
url: "https://developers.google.com/assistant/images/badges/XPM_BADGING_GoogleAssistant_VER.png",
accessibilityText: "Works With the Google Assistant logo",

},
},
"GoogleHomeItemKey": {
title: "Google Home",
description: "Google Home is a powerful speaker and voice Assistant.",
image: {
url: "https://lh3.googleusercontent.com/Nu3a6F80WfixUqf_ec_vgXy_c0-0r4VLJRXjVFF_X_CIilEu8B9fT35qyTEj_PEsKw",
accessibilityText: "Google Home"

},
},

},
}));
agent.add(conv);

}

intentMap.set("Carousel", carouselHandler);

"dependencies": {
"actions-on-google": "^2.13.0",

}

https://developers.google.com/assistant/conversational/df-asdk/rich-responses

https://github.com/actions-on-google/actions-on-google-nodejs
https://github.com/bonigarcia/nodejs-examples
https://developers.google.com/assistant/conversational/df-asdk/rich-responses

8. Account linkining
• If we need authenticate the users of our agent, we can use built-in

features for Google Sing-in (i.e., allows to login in our agent using a
Google account)

• This feature is implemented through Google Assistant
• The procedure to use it is the following:
1. Activate account linking
2. Specify Google Assistant Sing In in some intent
3. Code fulfillment using SignIn

32Platforms for Networked Communities - Development Guide

https://developers.google.com/assistant/identity/google-sign-in

https://developers.google.com/assistant/identity/google-sign-in

8. Account linkining
1. Activate account linking

• Go to the account linking
section of the actions console

• Enable “Account linking”
• Select “Yes” to allow user to sing

up for new accounts
• Set “Google Sign in” as linking

type
• Copy Client ID (it is used in the

fulfillment code)

33Platforms for Networked Communities - Development Guide

URL: https://console.actions.google.com/u/1/project/ZZZZZZZ/accountlinking/
(... where ZZZZZZZ is the project name)

https://console.actions.google.com/u/1/project/ZZZZZZZ/accountlinking/

8. Account linkining
2. Specify Google Assistant Sing In in some intent

34Platforms for Networked Communities - Development Guide

For instance, in the “Default
Welcome Intent”

8. Account linkining
3. Code fulfillment using SignIn

35Platforms for Networked Communities - Development Guide

// Imports
const { dialogflow, SignIn, Image, Carousel, Suggestions } = require("actions-on-google");
const functions = require("firebase-functions");
const axios = require("axios").default;
const dateFormat = require("dateformat");
const admin = require("firebase-admin");

// Dialogflow setup
const app = dialogflow({
clientId: "XXXXXXXXXXX",
// XXXXXXXXXXX = Client ID issued by Google to your Actions
// Get this clientId from https://console.actions.google.com/u/1/project/ZZZZZZZ/accountlinking/
// ... where ZZZZZZZ is the name of your project

});
exports.dialogflowFirebaseFulfillment = functions.https.onRequest(app);

// Intent handlers:
app.intent("Default Welcome Intent", (conv) => {

const payload = conv.user.profile.payload;
if (payload) {

console.log("**** payload:", payload);
conv.ask(`Welcome to my agent, ${payload.given_name}! What do you want to do next?`);

} else {
conv.ask(new SignIn("hello"));

}
});

Set client id here

Handler for our
"Default Welcome Intent" intent

https://github.com/bonigarcia/nodejs-examples

8. Account linkining
• To use this Google Sign, we need to it using Google Assistant:

36Platforms for Networked Communities - Development Guide

The first time, the user is
propmted with some

information about sign-in.
He/she needs to accept

(typing “Yes” twice)

8. Account linkining
• After that, the user account is used in the agent (a confirmation email is

sent)

37Platforms for Networked Communities - Development Guide

The agent now appears in the permissions
page of the Google account:

https://myaccount.google.com/permissions

https://myaccount.google.com/permissions

9. Local deployment
• So far, we have seen that to test any change in our fulfillment code, it

must be deployed
• Using the inline editor
• Using our local environment and deploying using the command
gcloud functions deploy

• Problem: the deployment of a cloud function takes several minutes to be
completed

• Solution: deploy our fulfillment in the local machine and serve it through
a public URL (e.g. using ngrok)

38Platforms for Networked Communities - Development Guide

9. Local deployment
• To deploy our fulfillmen in local, first we need firebase CLI. We can use npm

for that:
• Firebase CLI can be used to deploy (as a cloud function) or serve (in local) our

fulfillment code
• The first time, we need login in Firebase (firebase login --no-
localhost)

• We will need to copy and paste the provided URL in a web browser, authenticate with
our UC3M account, and paste the authorization code in the shell

39Platforms for Networked Communities - Development Guide

$ npm install -g firebase-tools

$ firebase login --no-localhost
i Firebase optionally collects CLI usage and error reporting information to help improve our products. Data
is collected in accordance with Google's privacy policy (https://policies.google.com/privacy) and is not
used to identify you.

? Allow Firebase to collect CLI usage and error reporting information? No
Visit this URL on any device to log in:
https://accounts.google.com/o/oauth2/auth?client_id..
? Paste authorization code here: xxxxxxxxxxxxx
✔ Success! Logged in as boni.gg@gmail.com

9. Local deployment

40Platforms for Networked Communities - Development Guide

$ firebase init
######## #### ######## ######## ######## ### ###### ########
##
######
##
########

You're about to initialize a Firebase project in this directory:
/home/boni_gg/uc3m-it-1920-16147-g0A

? Which Firebase CLI features do you want to set up for this folder? Press Space to select features,
then Enter to confirm your choices.
◯ Database: Deploy Firebase Realtime Database Rules
◯ Firestore: Deploy rules and create indexes for Firestore
❯◉ Functions: Configure and deploy Cloud Functions
◯ Hosting: Configure and deploy Firebase Hosting sites
◯ Storage: Deploy Cloud Storage security rules
◯ Emulators: Set up local emulators for Firebase features

(continue in next slide)

• Then, we need to create the project scaffolding using the command
firebase init:

9. Local deployment

41Platforms for Networked Communities - Development Guide

=== Project Setup
First, let's associate this project directory with a Firebase project.
You can create multiple project aliases by running firebase use --add,
but for now we'll just set up a default project.
? Please select an option: Use an existing project
? Select a default Firebase project for this directory: uc3m-it-1920-16147-g0a (uc3m-it-1920-16147-g0A)
i Using project uc3m-it-1920-16147-g0a (uc3m-it-1920-16147-g0A)
=== Functions Setup
A functions directory will be created in your project with a Node.js
package pre-configured. Functions can be deployed with firebase deploy.
? What language would you like to use to write Cloud Functions? JavaScript
? Do you want to use ESLint to catch probable bugs and enforce style? No
✔ Wrote functions/package.json
✔ Wrote functions/index.js
✔ Wrote functions/.gitignore
? Do you want to install dependencies with npm now? Yes
> protobufjs@6.8.9 postinstall /home/boni_gg/uc3m-it-1920-16147-g0A/functions/node_modules/protobufjs
> node scripts/postinstall
npm notice created a lockfile as package-lock.json. You should commit this file.
added 249 packages from 188 contributors and audited 834 packages in 9.764s
found 0 vulnerabilities
i Writing configuration info to firebase.json...
i Writing project information to .firebaserc...
i Writing gitignore file to .gitignore...
✔ Firebase initialization complete!

(continue from previous slide)

9. Local deployment

42Platforms for Networked Communities - Development Guide

• Then, we can proceed to development of our agent (files index.js
and package.json)

• After that, we need to resolve the Node.js dependencies using the
command npm install:

$ npm install
npm WARN notsup Unsupported engine for dialogflow-fulfillment@0.6.1: wanted: {"node":"6"} (current:
{"node":"12.16.1","npm":"6.13.4"})
npm WARN notsup Not compatible with your version of node/npm: dialogflow-fulfillment@0.6.1

added 90 packages from 101 contributors, removed 2 packages and audited 288 packages in 5.145s

5 packages are looking for funding
run `npm fund` for details

found 6 high severity vulnerabilities
run `npm audit fix` to fix them, or `npm audit` for details

At this point, our fulfillment can be
deployed as a cloud funtion using the

command: firebase deploy
(it is equivalent to gcloud
functions deploy)

9. Local deployment

43Platforms for Networked Communities - Development Guide

• Then, we serve our fulfillment as a local function, using the command
firebase serve --only functions:

$ firebase serve --only functions
! Your requested "node" version "10" doesn't match your global version "12"
i functions: Watching "C:\Users\boni\Downloads\ngrok\functions" for Cloud Functions...
! functions: The Cloud Firestore emulator is not running, so calls to Firestore will affect production.
+ functions[dialogflowFirebaseFulfillment]: http function initialized (http://localhost:5000/uc3m-it-
2021-16147-teachers/us-central1/dialogflowFirebaseFulfillment).

At this point, our function is deployed locally
(in the port 5000 by default). Now, we need a
way to expose this service using a public URL.

For that, we are going to use ngrok

9. Local deployment

44Platforms for Networked Communities - Development Guide

• ngrok is a tool that allows to create a tunnel using a public URL to a
service deployed in the localhost

• For that, it uses NAT traversal techniques
• It is very useful to create public webhooks

• To install ngrok in our machine, we can use npm:
• Then,we invoke the following command in the shell (to create a public

URL pointing to localhost:5000):

https://ngrok.com/

$ npm install -g ngrok

$ ngrok http 5000
ngrok by @inconshreveable
(Ctrl+C to quit)
Session Status online
Session Expires 1 hour, 23 minutes
Update update available (version 2.3.38, Ctrl-U to update)
Version 2.3.35
Region United States (us)
Web Interface http://127.0.0.1:4040
Forwarding http://ed9ecc04e72d.ngrok.io -> http://localhost:5000
Forwarding https://ed9ecc04e72d.ngrok.io -> http://localhost:5000

We need the URL using HTTPS
for our agent WebHook

https://ngrok.com/

9. Local deployment

45Platforms for Networked Communities - Development Guide

• We use the path our local service and the public HTTPS URL. In the
example before is:

https://ed9ecc04e72d.ngrok.io/uc3m-it-2021-16147-teachers/us-central1/dialogflowFirebaseFulfillment

Finally, we enable the webhook
in the fulfillment setup, and
specify the generated URL

https://ed9ecc04e72d.ngrok.io/uc3m-it-2021-16147-teachers/us-central1/dialogflowFirebaseFulfillment

	Platforms for Networked Communities
	Table of contents
	1. Introduction
	1. Introduction
	2. DialogFlow
	3. Cloud Source Repositories
	3. Cloud Source Repositories
	3. Cloud Source Repositories
	4. Cloud Shell
	4. Cloud Shell
	4. Cloud Shell
	4. Cloud Shell
	4. Cloud Shell
	5. Google Cloud SDK
	5. Google Cloud SDK
	5. Google Cloud SDK
	5. Google Cloud SDK
	6. Firestore
	6. Firestore
	6. Firestore
	6. Firestore
	6. Firestore
	6. Firestore
	7. Fulfillment examples
	7. Fulfillment examples
	7. Fulfillment examples
	7. Fulfillment examples
	7. Fulfillment examples
	7. Fulfillment examples
	7. Fulfillment examples
	7. Fulfillment examples
	8. Account linkining
	8. Account linkining
	8. Account linkining
	8. Account linkining
	8. Account linkining
	8. Account linkining
	9. Local deployment
	9. Local deployment
	9. Local deployment
	9. Local deployment
	9. Local deployment
	9. Local deployment
	9. Local deployment
	9. Local deployment

