
Management of Multimedia
Information in Internet

Module 5. Natural Language Processing (NLP)

Unit 4. Neural NLP
Boni García

http://bonigarcia.github.io/
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2020/2021

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://bonigarcia.github.io/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. Deep Learning
3. Neural Networks
4. Keras
5. Takeaways

Management of Multimedia Information in Internet - 4. Neural NLP 2

1. Introduction
• As of the 2010s, deep neural networks became widespread in Natural

Language Processing (NLP)
• This approach is nowadays known as neural NLP

• In neural NLP, we use Deep Learning (DL) and/or Artificial Neural
Networks (ANN) to implement NLP applications (e.g. text classifiers,
chatbots, etc.)

• DL is a kind of ANN in which more than one hidden layer (typically a lot)

• In this course, we will use Keras to build NLP applications using ANNs
with Python (in Jupyter Notebooks)

• Keras is a high-level framework written in Python which provides a friendly API
optimized for common use cases

• Keras has been built on the top of TensorFlow

Management of Multimedia Information in Internet - 4. Neural NLP 3

Table of contents
1. Introduction
2. Deep Learning

• Benefits
• Why now?
• Applications

3. Neural Networks
4. Keras
5. Takeaways

Management of Multimedia Information in Internet - 4. Neural NLP 4

2. Deep Learning
• As we have seen previously, Machine Learning (ML) is a branch of

Artificial Intelligence (AI) which enables computers to learn and make
predictions from raw data

• In contrast to the traditional method of hardcoded rules or algorithms

• Deep Learning (DL) is a branch of ML based on Artificial Neural
Networks (ANN)

• ANNs are computing systems designed to simulate the way the human brain
analyzes and processes information

Management of Multimedia Information in Internet - 4. Neural NLP 5

AIMLDL

2. Deep Learning - Benefits
• There are two main benefits of DL compared to ML
1. Scalability

2. Feature learning
• ML algorithms can have a bottleneck when it comes to creating features (this

process is sometimes called feature engineering)
• DL can automate this feature engineering, since this process becomes part of

the training process (first layer of the ANN)

Management of Multimedia Information in Internet - 4. Neural NLP 6

Source:
https://www.sumologic.com/blog/machine-learning-deep-learning/

• When ANNs are trained with more and more
data, their performance continues to increase

• This is generally different to other ML techniques
that reach a earlier limit in performance

https://www.sumologic.com/blog/machine-learning-deep-learning/

2. Deep Learning - Why now?
• The key concepts of DL were defined in the decade of 1980’s
• Nevertheless, there has been an unprecedented rise in DL-based

applications and architectures in the first two decades of the twenty-
first century

• This widespread adoption has been driven by:
1. Data. The availability of huge volumes of data on the Internet
2. Hardware. Evolution of high-end processors in the form of Graphical

Processing Units (GPUs) and Tensor Processing Units (TPUs) has
supplemented the rise of DL-based applications by making it possible to
perform heavy calculations

3. Tools. Increasing availability of open-source libraries, such as TensorFlow or
Keras, which make easy to implementation DL-based applications

Management of Multimedia Information in Internet - 4. Neural NLP 7

2. Deep Learning - Why now?
• GPUs were originally designed to manipulate computer graphics:

• Since GPUs perform parallel operations on multiple sets of data,
starting int early 2010’s, GPUs were started to be used to accelerate
calculations not only related to graphics (e.g. data science)

Management of Multimedia Information in Internet - 4. Neural NLP 8

• A Central Processing Unit (CPU) is designed with
fewer processor cores that have higher clock
speeds than the ones found on GPUs

• GPUs, on the other hand, have much greater
number of cores and render images more
quickly than a CPU because of its parallel
processing architecture, which allows it to
perform multiple calculations across streams of
data simultaneously Source:

https://towardsdatascience.com/parallel-computing-
upgrade-your-data-science-with-a-gpu-bba1cc007c24

https://towardsdatascience.com/parallel-computing-upgrade-your-data-science-with-a-gpu-bba1cc007c24

2. Deep Learning - Why now?
• In May 2016, Google announced its Tensor

Processing Unit (TPU)
• TPU is an AI accelerator application-specific

integrated circuit (ASIC) developed by Google
specifically for NN and ML using TensorFlow

Management of Multimedia Information in Internet - 4. Neural NLP 9

Source:
https://en.wikipedia.org/wiki/Tensor_Processing_Unit

• Google Colaboratory allows to use GPU and TPU (experimentally)
architecture as runtime for Jupyter Notebooks for free (depending
on the availability)

https://en.wikipedia.org/wiki/Tensor_Processing_Unit

2. Deep Learning - Applications
• Some examples of DL-based applications are:

- Self-driving cars: Through sensors and onboard analytics with DL, cars are learning to
recognize obstacles, facilitate situational awareness and strive to react appropriately

- Image recognition and labeling: Deep learning algorithms enable machines not only
used to recognize pictures, but also to find meaningful descriptions thereof

- Text classification (also known as text categorization): Including sentiment analysis,
news categorization, question answering, or natural language inference

- Language translation services: Neural machine translation is replacing the use of
statistical machine translation producing more accurate translations

- AlphaGo: which is a computer program that plays the board game Go

• These applications can produce results comparable to (and in some cases,
surpassing) human expert performance

Management of Multimedia Information in Internet - 4. Neural NLP 10

Table of contents
1. Introduction
2. Deep Learning
3. Neural Networks

• Biological neurons
• Perceptron
• Activation function
• Architecture
• Training
• Loss function
• Optimizers
• Generalization
• Review

4. Keras
5. Takeaways

Management of Multimedia Information in Internet - 4. Neural NLP 11

3. Neural Networks
• Artificial Neural Networks (ANNs), or simply Neural Networks (NNs)

are computing systems that attempts to identify the hidden trends
within data by using a process that mimics the functioning of neural
networks within human brain (biological neurons)

Management of Multimedia Information in Internet - 4. Neural NLP 12

• A NN is a mathematical construct that can
approximate almost any function, and
generate predictions for complex problems

• NNs have the ability to evolve as per new
information available so the network
produces the best possible result without
the need to redesign the output criteria

Source: Joshi, P. (2016) Python Machine Learning Cookbook. Packt Publishing.

3. Neural Networks - Biological neurons
• A biological neuron is a nerve cell specialized to transmit information

throughout the body
• The main components which make possible this transmission are:

Management of Multimedia Information in Internet - 4. Neural NLP 13

Source:
https://www.fromthegenesis.com/artificial-neural-network-part-2/

- Dendrites (receivers). Each dendrite has a weight
associated to the incoming signal. This weight dictate
the importance of the signal coming in. These values
get changed dynamically

- Cell body: Incoming signals are summed up in the
cell body (called soma). As this value reaches a
particular threshold, the summed-up signal is
propagated through the axon

- Axons (transmitters). Connected to other cells (e.g.
dendrites from other neurons)

https://www.fromthegenesis.com/artificial-neural-network-part-2/

3. Neural Networks - Biological neurons
• The human brain is essentially a bunch of neurons connected to each

other in a huge interconnected network (it is estimated that there are
100 billion neurons in the human brain)

• Neural connections can be strong and weak
• A strong connection allows more charge to flow between them and a weak

one allows lesser
• A neuron pathway which frequently transmits charge will eventually become

a strong pathway
• Neural pathways become stronger upon frequent usage, and our brain

essentially tries to use pathways which have proven to give us better results
over time

• We humans live our lives and decide whether our actions are good or
bad, we are training our brain to make sure we do not repeat our
previous mistakes

Management of Multimedia Information in Internet - 4. Neural NLP 14

3. Neural Networks - Perceptron
• The basic unit a NN is called neuron (or perceptron). A neuron accepts

some input and generates some output. A neuron is composed by:

Management of Multimedia Information in Internet - 4. Neural NLP 15

Similar to axon

• Input: incoming (weighted) data from other networks/neurons
• Summation: aggregates the input signal received
• Activation: takes the aggregated information and fires a signal

only if the aggregated input crosses a certain threshold
• Output (similar to axon): connected to other neurons/networks

or final output layer (for predictions)

Similar to soma

Similar to dendrites

Input

X1

X2

X2

Xn Summation

Σ

Activation

Output

Activation
function

(𝜑𝜑)
Yp

W1

W2

W3

Wn

𝑌𝑌𝑝𝑝 = 𝜑𝜑 �
𝒊𝒊=𝟏𝟏

𝒏𝒏

𝑾𝑾𝒊𝒊 � 𝑿𝑿𝒊𝒊 +𝒃𝒃

The neuron add as bias value (b) for
having a margin of adjustability (not

dependent on the input)
Neuron

3. Neural Networks - Activation function
• The activation function (a.k.a. transfer or step function) control the

threshold that decides to fire the output
• It is used to determine the output layer like a yes or no
• It maps the resulting values in between 0 to 1 or -1 to 1

• Activation functions introduce nonlinearity in the network
• Without nonlinearity, the network would be performing linear mappings

between the input
• Linearity in not desirable since in real world data often there is non linear

relationships between the input and output variables
• Hence all we have to do is keep some non linear function as the activation

function for each neuron is capable of fitting on non linear data

Management of Multimedia Information in Internet - 4. Neural NLP 16

3. Neural Networks - Activation function
• Some examples of activations functions are:

• Sigmoid
• Hyperbolic tangent (Tanh)
• Rectified linear unit (ReLU)

• The sigmoid activation function constrains the output in a range
between 0 and 1 (used for tasks involving binary outputs)

Management of Multimedia Information in Internet - 4. Neural NLP 17

Each neuron bias value (b) allows
to shift the activation function to

the left or right

3. Neural Networks - Activation function
• The hyperbolic tangent (Tanh) converts the input values within the

range of -1 to 1. It is a zero-centered function (unlike sigmoid)

Management of Multimedia Information in Internet - 4. Neural NLP 18

3. Neural Networks - Activation function
• The rectified linear unit (ReLU) is one the most commonly used

activation function today
• ReLU is calculated with simple formula, which does not require

complex computations

Management of Multimedia Information in Internet - 4. Neural NLP 19

3. Neural Networks - Architecture

Management of Multimedia Information in Internet - 4. Neural NLP 20

• A NN consists of many nodes (neurons) in many layers
• Each layer can have any number of nodes and a neural network can

have any number of layers

Layer 1 Layer 2

3. Neural Networks - Architecture

Management of Multimedia Information in Internet - 4. Neural NLP 21

• An NN consists of three types of layers: input, hidden, and output

Input layer Hidden layer Output layer

Input 1

Input 2

Input 3

Input 4

Output

3. Neural Networks - Architecture
1. Input layer:

• The number of nodes (or neurons) in this layer is equal to the number of features that to be fed
to the network

2. Hidden layer:
• Intermediate layers in a NN
• An NN can have one or more hidden layers. For simple datasets, NN usually has only one hidden

layer. A NN is referred as deep when there is more than one hidden layer
• The relationships and patterns in data are derived in these layers
• The number of hidden layers and nodes in each hidden layer are hyperparameters and need to

be tuned

3. Output layer:
• Final layer in NN that provides the output for a particular input
• The number of nodes in the output layer depends on the type of problem being solved. For

example, the output layer has only one node for a binary classification problem or equals to the
number of classes in a multiclass classification problems

Management of Multimedia Information in Internet - 4. Neural NLP 22

3. Neural Networks - Architecture
• Example (NN architecture for solving a multilabel classification problem):

Management of Multimedia Information in Internet - 4. Neural NLP 23

Input layer Hidden layer Output layer

Input feature 1

Predicted classes

Input feature 2

3. Neural Networks - Architecture
• Example (NN architecture for solving a binary classification problem):

Management of Multimedia Information in Internet - 4. Neural NLP 24

Input layer Hidden layer Output layer

Input feature 1

Predicted class

Input feature 2

3. Neural Networks - Architecture
• When a NN has more than one hidden layer, it is known as a Deep

Neural Network (DNN)

Management of Multimedia Information in Internet - 4. Neural NLP 25

Input layer Hidden layers Output layer

3. Neural Networks - Training
• Now that we have seen how a NN is represented, we can go on to see

how exactly it works
• Since there are many layers having many neurons, there exists a

complex set of weights to get an output from some input variables
• Each weight in this network can be changed and hence there are

countless configurations a neural network can have
• A trained NN has some weights configuration which accurately

predicts correct outputs from some input data and that is what we
hope to achieve

• Backward propagation (or simply backpropagation) is the name of the
algorithm a NN uses to train itself

Management of Multimedia Information in Internet - 4. Neural NLP 26

• In a fully connected NN, when
the inputs pass through the
neurons (hidden layer to
output layer) and the final
value is calculated at the
output layer, we say that the
inputs have forward
propagated

Management of Multimedia Information in Internet - 4. Neural NLP 27

3. Neural Networks - Training

• Supposing we know the actual
value of the output (Y), we can
calculate the loss value (L) as
difference between the actual
value and the predicted value
(Yp):

L = (Y - Yp)2

• To minimize L, we try to optimize
the weights accordingly, by
taking a partial derivate of L to
the previous weights (backward
propagation)

Management of Multimedia Information in Internet - 4. Neural NLP 28

3. Neural Networks - Training

• Summary of the typical learning process of a NN:
1. Randomly initialize the weights to small values close to zero (but not

equal to zero)
2. Forward Propagation: In which information is passed through the NN

starting from input layer until the output layer
3. Compare the predicted value and actual value to find out the loss value

(also known as difference or error)
4. Back Propagation: In the step error are propagated back to the input

layer to adjust the weights
5. Repeat step 2 to 4 until we get the minimum value of the loss function

with optimized value of weights for each of the input variable
• This entire cycle is called one epoch. Usually NNs can take several epochs to train

and it is up to us to decide how many epochs it will train for

Management of Multimedia Information in Internet - 4. Neural NLP 29

3. Neural Networks - Training

• The loss function calculate how well or bad our model is performing
by comparing what the model is predicting with the actual value it is
supposed to output.

• If Ypred is very far off from Y, the loss value (L) will be very high
• However if both values are almost similar, L will be very low
• Hence we need to keep a loss function which can penalize a model

effectively while it is training on a dataset

• In classification, a NN is trying to predict a discrete value (i.e. a class
for a given input)

Management of Multimedia Information in Internet - 4. Neural NLP 30

3. Neural Networks - Loss function

• In binary classification, there will be only one node in the output
layer (we will be predicting between two classes)

• In order to get the output in a probability format, we can use the
sigmoid function to obtain a real value between 0 and 1 as output

• If the output is above 0.5 (50% Probability), we will consider it to be falling
under the positive class and if it is below 0.5 we will consider it to be falling
under the negative class

Management of Multimedia Information in Internet - 4. Neural NLP 31

3. Neural Networks - Loss function

• The loss function we use for binary
classification is called binary cross entropy
(BCE)

• This function effectively penalizes the neural
network for binary classification task

Source:
https://deeplearningdemystified.com/article/fdl-3

https://deeplearningdemystified.com/article/fdl-3

• Multiclass classification is appropriate when we need our model to
predict one possible class output every time

• The activation function we use in this case is softmax
• The goal of softmax is to make sure one value is very high (close to 1) and all

other values are very low (close to 0)
• This function ensures that all the output nodes have values between 0–1

and the sum of all output node values equals to 1 always

Management of Multimedia Information in Internet - 4. Neural NLP 32

3. Neural Networks - Loss function

• The loss function we use for multiclass classification
is called sparse categorial cross entropy

Source:
https://deeplearningdemystified.com/article/fdl-3

https://deeplearningdemystified.com/article/fdl-3

• The loss function tells us how poorly the model is performing
• We need to use this loss to train our NN such that it performs better
• For that, we need to try to minimize that loss by changing the

weights of the NN. This process is called optimization
• The optimizers are the components which implements the

backpropagation algorithm

Management of Multimedia Information in Internet - 4. Neural NLP 33

3. Neural Networks - Optimizers

• There are several optimizers we can chose when creating a NN, e.g.:
• Gradient Descent, also called Stochastic Gradient Descent (SGD)
• Momentum
• Nesterov Accelerated Gradients (NAG)
• Adagrad (adaptive gradients)
• RMSProp
• Adam

• More info on:

Management of Multimedia Information in Internet - 4. Neural NLP 34

3. Neural Networks - Optimizers

https://deeplearningdemystified.com/article/fdl-4

https://deeplearningdemystified.com/article/fdl-4

• Generalization is the ability of a NN to predict unseen data correctly
• One of the problems that occur during NN training is

called overfitting
• The error on the training set is driven to a very small value, but when new

data is presented to the NN the error is large
• The NN memorized the training examples, but it is not able to generalize to

new situations
• There are certain aspects of NN which we can control in order to

prevent overfitting, such as:
• Dropout neurons (ignoring some nodes during training)
• Number of parameters (weights and bias, if any, in the NN) by tuning the

number of layers and/or nodes per layer
• Early stopping (reduce number of epochs before the loss increases)

Management of Multimedia Information in Internet - 4. Neural NLP 35

3. Neural Networks - Generalization

• A NN is composed of layers that are chained
together, maps the input data to predictions

• The loss function then compares these
predictions to the targets, producing a loss
value: a measure of how well the network’s
predictions match what was expected

• The optimizer uses this loss value to update
the network’s weights

• This optimization process is repeated a number
of epochs

Management of Multimedia Information in Internet - 4. Neural NLP 36

3. Neural Networks - Review

Table of contents
1. Introduction
2. Deep Learning
3. Neural Networks
4. Keras

• Sequential mode
• Text classification
• Example: multiclass classifier
• Example: binary classifier
• Fine-tuning

5. Takeaways

Management of Multimedia Information in Internet - 4. Neural NLP 37

4. Keras
• Keras is a high-level framework that can be used to build NNs

• It is written in Python and provides numerous APIs and modules for defining,
building, and training NNs with ease

• Keras provides a wrapper around frameworks such as TensorFlow (by default),
CNTK, or Theano and hides low-level details

• TensorFlow is an open-source library developed by Google for ML
model building and deployment

• Developed in C++, it provides different high-level and low-level APIs in different
languages, such as Python, JavaScript, C++, Java, Go, or Swift

• In this course we use Keras since it provides a user-friendly API
optimized for common use cases which provides clear and actionable
feedback for user errors

Management of Multimedia Information in Internet - 4. Neural NLP 38

4. Keras - Sequential mode
• A NN can be envisioned as a graph in which layers are stacked

• Keras provides an API to build these stacks of layers

• The simplest is the sequential model, which is a linear stack of layers
• Dense layer is the regular deeply connected NN layer

• All neurons in each layer are connected to all neurons in the next layer
• It is most common and frequently used layer
• Dense layer does the below operation on the input and return the output

Management of Multimedia Information in Internet - 4. Neural NLP 39

https://www.tensorflow.org/guide/keras/sequential_model

output = activation(dot(input, kernel) + bias)

• input represent the input data
• kernel represent the weight data
• dot represent numpy dot product of all input and its

corresponding weights
• bias represent a biased value used in machine

learning to optimize the model
• activation represent the activation function.

https://www.tensorflow.org/guide/keras/sequential_model

4. Keras - Sequential mode
• Example of model definition using sequential mode in Keras:

Management of Multimedia Information in Internet - 4. Neural NLP 40

from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(3, input_dim=2))
model.add(Dense(1))

The first stack defines the input layer
an the first hidden layer

Input layer Hidden layer Output layer

The last stack defines the output
layer

4. Keras - Sequential mode
• Example of model definition using sequential mode in Keras:

Management of Multimedia Information in Internet - 4. Neural NLP 41

Model: "sequential_1"

Layer (type) Output Shape Param #
===
dense_2 (Dense) (None, 3) 9

dense_3 (Dense) (None, 1) 4
===
Total params: 13
Trainable params: 13
Non-trainable params: 0

from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(3, input_dim=2))
model.add(Dense(1))

model.summary()

The method summary() provides a summary of the
Keras model. The parameters are weights that are

learnt during training. In the sequential mode of Keras,
the number of parameters of each layer is calculated as:

output_size * (input_size + 1)

4. Keras - Sequential mode
• Example of model definition using sequential mode in Keras:

Management of Multimedia Information in Internet - 4. Neural NLP 42

from keras.utils.vis_utils import plot_model

plot_model(model, show_shapes=True, show_layer_names=True)
We can use the function
plot_model() to

visualize our NN

4. Keras - Sequential mode
• Once the model is defined we need to compile it providing the following

parameters: loss function, optimizer, and metrics:

• The last step is to train our model using the training and validation sets:

Management of Multimedia Information in Internet - 4. Neural NLP 43

model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])

Epoch 1/5
594/594 [==============================] - 3s 4ms/step - loss: 2.3002e-05 - accuracy: 1.0000 -
val_loss: 0.0929 - val_accuracy: 0.9753
Epoch 2/5
594/594 [==============================] - 2s 4ms/step - loss: 1.6429e-05 - accuracy: 1.0000 -
val_loss: 0.0945 - val_accuracy: 0.9753
Epoch 3/5
594/594 [==============================] - 2s 4ms/step - loss: 1.1780e-05 - accuracy: 1.0000 -
val_loss: 0.0959 - val_accuracy: 0.9753
Epoch 4/5
594/594 [==============================] - 2s 4ms/step - loss: 8.4979e-06 - accuracy: 1.0000 -
val_loss: 0.0974 - val_accuracy: 0.9753
Epoch 5/5
594/594 [==============================] - 2s 4ms/step - loss: 6.1434e-06 - accuracy: 1.0000 -
val_loss: 0.0987 - val_accuracy: 0.9753

history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=5)

One epoch is when the entire dataset is passed
forward and backward through the NN. Since
one epoch can be too big to feed to the NN at
once, we divide it in several smaller batches.
The batch size is the number of training data

present in a single batch.

4. Keras - Text classification
• Hints to create a NN for text classification with Keras:

Management of Multimedia Information in Internet - 4. Neural NLP 44

from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(30, input_dim=vocabulary_size, activation="relu"))
model.add(Dense(number_of_classes, activation="softmax"))

In this course, we are going to handle
two text classification problems: binary
and multiclass. First, we need to define

the size of our NN in Keras. The table
below provides some hints about it

Classifier type Number of nodes in
the input layer

Number of hidden
layers

Number of nodes
per hidden layer

Number of nodes in
the output layer

Binary classifier Number of features
(vocabulary size) Typically 1 or 2

? 1

Multiclass classifier ? Number of classes

Using too few neurons in the hidden layers will result
in underfitting, but using too much neuron in the

hidden layer(s) may result in overfitting

4. Keras - Text classification
• Hints to create a NN for text classification with Keras:

Management of Multimedia Information in Internet - 4. Neural NLP 45

Classifier type Layer Activation function

Binary classifier Hidden relu

Output sigmoid

Multiclass classifier Hidden relu

Output softmax

from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(30, input_dim=vocabulary_size, activation="relu"))
model.add(Dense(number_of_classes, activation="softmax"))

For each layer, we need to define the
activation function. In text

classification, the most convenient
activation functions are depicted in

the table below:

4. Keras - Text classification
• Hints to create a NN for text classification with Keras:

Management of Multimedia Information in Internet - 4. Neural NLP 46

Classifier type Loss function Optimizer Metrics

Binary classifier binary_crossentropy adam accuracy

Multiclass classifier sparse_categorical_crossentropy adam accuracy

from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(30, input_dim=vocabulary_size, activation="relu"))
model.add(Dense(number_of_classes, activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

In text classification, the most convenient parameters
(loss function, optimizer, and metric) to compile the

model are depicted in the table below:

4. Keras - Example: multiclass classifier

Management of Multimedia Information in Internet - 4. Neural NLP 47

Dataset

from google.colab import drive
from sklearn.datasets import load_files

drive.mount("/content/drive")

Raw data (BCC article datasets) obtained from the Insight Project
http://mlg.ucd.ie/datasets/bbc.html
loaded_data = load_files("/content/drive/My Drive/data/bbc")

raw_dataset, y, y_names = loaded_data.data, loaded_data.target, loaded_data.target_names

print("Number of (raw) documents:", len(raw_dataset))
print("Labels (automatically generated from subfolder names):", y_names)
print("First label values:", y[:5])

Mounted at /content/drive
Number of (raw) documents: 2225
Labels (automatically generated from subfolder names): ['business', 'entertainment', 'politics', 'sport', 'tech']
First label values: [0 4 2 3 2]

In this example, the expected labels are already in numeric format. If this
is not the case (it depends on the dataset) we should encode the labels:

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
y_enc = le.fit_transform(y)

https://github.com/bonigarcia/nlp-examples

4. Keras - Example: multiclass classifier

Management of Multimedia Information in Internet - 4. Neural NLP 48

Text preprocessing

import nltk
from nltk.tokenize import regexp_tokenize
from nltk.stem.snowball import SnowballStemmer
from nltk.corpus import stopwords
nltk.download("stopwords")

dataset = []
stemmer = SnowballStemmer("english")
stopwords_en = stopwords.words("english")

for i in range(0, len(raw_dataset)):
tokens = regexp_tokenize(str(raw_dataset[i]), r"\w+")
stems = [stemmer.stem(token) for token in tokens]
words_no_stopwords = [word for word in stems if word not in stopwords_en]
document = ' '.join(words_no_stopwords)
dataset.append(document)

Feature extraction (converting text to vectors)

from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(dataset).toarray()

[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.

https://github.com/bonigarcia/nlp-examples

4. Keras - Example: multiclass classifier

Management of Multimedia Information in Internet - 4. Neural NLP 49

Exploratory analysis

vocabulary_size = X.shape[1]
number_of_classes = len(y_names)

print("Number of (preprocessed) documents:", len(dataset))
print("Vocabulary size:", vocabulary_size)
print("Number of classes:", number_of_classes)
print("Vectorized dataset (number of documents, vocabulary size):", X.shape)

Number of (preprocessed) documents: 2225
Vocabulary size: 22576
Number of classes: 5
Vectorized dataset (number of documents, vocabulary size): (2225, 22576)

Split training and testing sets

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

print("Training set shape:", X_train.shape)
print("Test set shape:", X_test.shape)

Training set shape: (1780, 22576)
Test set shape: (445, 22576)

https://github.com/bonigarcia/nlp-examples

4. Keras - Example: multiclass classifier

Management of Multimedia Information in Internet - 4. Neural NLP 50

Create model

from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(30, input_dim=vocabulary_size, activation="relu"))
model.add(Dense(number_of_classes, activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

model.summary()

Model: "sequential"

Layer (type) Output Shape Param #
===
dense (Dense) (None, 30) 677310

dense_1 (Dense) (None, 5) 155
===
Total params: 677,465
Trainable params: 677,465
Non-trainable params: 0

https://github.com/bonigarcia/nlp-examples

4. Keras - Example: multiclass classifier

Management of Multimedia Information in Internet - 4. Neural NLP 51

Plot model

from keras.utils.vis_utils import plot_model

plot_model(model, show_shapes=True, show_layer_names=True)

https://github.com/bonigarcia/nlp-examples

4. Keras - Example: multiclass classifier

Management of Multimedia Information in Internet - 4. Neural NLP 52

Evaluate model

loss, accuracy = model.evaluate(X_train, y_train, verbose=False)
print("Training Accuracy: {:.4f}".format(accuracy))

loss, accuracy = model.evaluate(X_test, y_test, verbose=False)
print("Testing Accuracy: {:.4f}".format(accuracy))

Training Accuracy: 1.0000
Testing Accuracy: 0.9753

Accuracy is a metric that describes
just what percentage of your test

data are classified correctly.
Loss can be seen as

the distance between the true
values of the problem and the
values predicted by the model.

https://github.com/bonigarcia/nlp-examples

4. Keras - Example: binary classifier

Management of Multimedia Information in Internet - 4. Neural NLP 53

Dataset

from google.colab import drive
import pandas as pd
import numpy as np

drive.mount("/content/drive")

y_names = ["negative", "positive"]

Sentiment Labelled Sentences Data Set from the UCI (University of California Irvine) Machine Learn
ing Repository
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
dataset = pd.read_csv("/content/drive/My Drive/data/sentiment labelled sentences/yelp_labelled.txt",
sep="\t", names=y_names)

y = np.array(dataset.get(y_names[1]).tolist())
raw_dataset = dataset.get(y_names[0]).tolist()

print("Number of (raw) documents:", len(raw_dataset))
print("Labels:", y_names)
print("First label values:", y[:5])

Mounted at /content/drive
Number of (raw) documents: 1000
Labels: ['negative', 'positive']
First label values: [1 0 0 1 1]

https://github.com/bonigarcia/nlp-examples

4. Keras - Example: binary classifier

Management of Multimedia Information in Internet - 4. Neural NLP 54

Create model

from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(10, input_dim=vocabulary_size, activation="relu"))
model.add(Dense(8, activation="relu"))
model.add(Dense(1, activation="sigmoid"))

model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])

model.summary()

Model: "sequential_6"

Layer (type) Output Shape Param #
===
dense_12 (Dense) (None, 10) 15760

dense_13 (Dense) (None, 8) 88

dense_14 (Dense) (None, 1) 9
===
Total params: 15,857
Trainable params: 15,857
Non-trainable params: 0

https://github.com/bonigarcia/nlp-examples

4. Keras - Example: binary classifier

Management of Multimedia Information in Internet - 4. Neural NLP 55

Evaluate model

loss, accuracy = model.evaluate(X_train, y_train, verbose=False)
print("Training Accuracy: {:.4f}".format(accuracy))

loss, accuracy = model.evaluate(X_test, y_test, verbose=False)
print("Testing Accuracy: {:.4f}".format(accuracy))

Training Accuracy: 0.9937
Testing Accuracy: 0.7550 When the loss is increasing in time

(epochs) during training, we have
a problem of overfitting. To solve
this problem, we can try different

alternatives:
• Dropout neurons (ignoring

some nodes during training)
• Change number of parameters

(number of layers and/or nodes
per layer)

• Early stopping (reduce number
of epochs before the loss

increases)

https://github.com/bonigarcia/nlp-examples

4. Keras - Fine-tuning
• We can try fine-tuning the various of the model hyperparameters,

including the following:
• Number of hidden layers
• Number of neurons in each layer
• Different activation functions
• Different optimizers
• Batch size
• The number of epochs

Management of Multimedia Information in Internet - 4. Neural NLP 56

Table of contents
1. Introduction
2. Deep Learning
3. Neural Networks
4. Keras
5. Takeaways

Management of Multimedia Information in Internet - 4. Neural NLP 57

5. Takeaways
• Neural Networks (NNs) are computing systems that attempts to

make predictions using a network that mimics the human brain
• Like in ML, a NN should be trained and validated using a proper

dataset (a collection of documents in the case of NLP)
• In this course, we have used Keras to create NNs in Python in two

types of text classifiers: binary and multiclass
• The parameters we need to tune in a NN with Keras are: number of

hidden layers, number of nodes on the output layer, activation and
loss functions, optimizer, and metrics

• If overfitting happens, we need to change number of parameters of
the NN (number of layers and/or nodes per layer), add dropout
neurons, or include an early stopping callback

Management of Multimedia Information in Internet - 4. Neural NLP 58

	Management of Multimedia Information in Internet
	Table of contents
	1. Introduction
	Table of contents
	2. Deep Learning
	2. Deep Learning - Benefits
	2. Deep Learning - Why now?
	2. Deep Learning - Why now?
	2. Deep Learning - Why now?
	2. Deep Learning - Applications
	Table of contents
	3. Neural Networks
	3. Neural Networks - Biological neurons
	3. Neural Networks - Biological neurons
	3. Neural Networks - Perceptron
	3. Neural Networks - Activation function
	3. Neural Networks - Activation function
	3. Neural Networks - Activation function
	3. Neural Networks - Activation function
	3. Neural Networks - Architecture
	3. Neural Networks - Architecture
	3. Neural Networks - Architecture
	3. Neural Networks - Architecture
	3. Neural Networks - Architecture
	3. Neural Networks - Architecture
	3. Neural Networks - Training
	3. Neural Networks - Training
	3. Neural Networks - Training
	3. Neural Networks - Training
	3. Neural Networks - Loss function
	3. Neural Networks - Loss function
	3. Neural Networks - Loss function
	3. Neural Networks - Optimizers
	3. Neural Networks - Optimizers
	3. Neural Networks - Generalization
	3. Neural Networks - Review
	Table of contents
	4. Keras
	4. Keras - Sequential mode
	4. Keras - Sequential mode
	4. Keras - Sequential mode
	4. Keras - Sequential mode
	4. Keras - Sequential mode
	4. Keras - Text classification
	4. Keras - Text classification
	4. Keras - Text classification
	4. Keras - Example: multiclass classifier
	4. Keras - Example: multiclass classifier
	4. Keras - Example: multiclass classifier
	4. Keras - Example: multiclass classifier
	4. Keras - Example: multiclass classifier
	4. Keras - Example: multiclass classifier
	4. Keras - Example: binary classifier
	4. Keras - Example: binary classifier
	4. Keras - Example: binary classifier
	4. Keras - Fine-tuning
	Table of contents
	5. Takeaways

