
Management of Multimedia
Information in Internet

Module 5. Natural Language Processing (NLP)

Unit 3. Statistical NLP
Boni García

http://bonigarcia.github.io/
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2020/2021

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://bonigarcia.github.io/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. Machine learning
3. Classification
4. Text representation
5. Text classification
6. Takeaways

Management of Multimedia Information in Internet - 5.3. Statistical NLP 2

1. Introduction
• In the late 1980s and mid 1990s, there was a revolution in NLP

with the introduction of Machine Learning (ML) algorithms for
language processing (this is called statistical NLP)

• By analysing large samples of real-world texts (corpora), a
computer system can learn and develop its own linguistic rules
that it will use to analyse future input

• To execute ML algorithms in NLP applications, first we need to
convert the raw text to some convenient mathematical text
representation (e.g. bags of words, vector space model)

• In NLP, its is very relevant the case of text classification, i.e.
choosing the correct label for a given text document (e.g. spam
detection, sentiment analysis, etc.)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 3

Table of contents
1. Introduction
2. Machine learning
3. Classification
4. Text representation
5. Text classification
6. Takeaways

Management of Multimedia Information in Internet - 5.3. Statistical NLP 4

2. Machine learning
• Machine learning (ML) is a subset of Artificial Intelligence (AI)

which aims to build systems that are capable of improving
automatically (without being explicitly programmed to do so)
through experience

• ML arises from this question: Could a computer automatically learn rules by
looking at data rather than programmers create rules by hand?

Management of Multimedia Information in Internet - 5.3. Statistical NLP 5

Traditional
programming

Rules
Data

Answers

Machine learningData
Answers

Rules

2. Machine learning
• The main categories for ML algorithms are:
- Supervised learning: It is a technique to deduce a function

(called predictive model) from training data. These data are pairs
of objects (label-value). In these algorithms, an expert labels the
data (usually called teacher)

- Unsupervised learning: The goal can be discovering hidden
patterns in data. No labels are given to the learning algorithm,
leaving it on its own to find structure in its input. No teacher to
instruct the learning algorithm

- Reinforcement learning: The algorithm interacts with a dynamic
environment a number of times and receives feedback
depending on the action. Consequently, the algorithm updates
its strategy

Management of Multimedia Information in Internet - 5.3. Statistical NLP 6

2. Machine learning

Management of Multimedia Information in Internet - 5.3. Statistical NLP 7

ML

Supervised
learning

Classification

Regression

Unsupervised
learning

Clustering

Anomaly
detection

Reinforcement
learning

To identify to which of a set of
categories a observation

belongs. For instance: image
(or text) classification

Statistical process to predict a
continuous number. For

example: weather (or market)
forecasting

Grouping a set of objects in such a
way that objects in the same group
(called a cluster) are more similar

(in some sense) to each other than
to those in other groups (clusters).

For example: recommender
systems or customer segmentation

Identification of rare items, events
or observations which raise

suspicions by differing significantly
from the majority of the data. For

example: intrusion detection

Develop a predictive
model based on

labelled data

Group and interpret
data based on some
input data (no label)

Classification (supervised learning)

2. Machine learning
• Classification vs clustering (supervised vs unsupervised learning):

Management of Multimedia Information in Internet - 5.3. Statistical NLP 8

Duck

Duck

Not duck

Not duck

Clustering (unsupervised learning)

Duck

Unsupervised
learning

algorithm

Supervised
learning

algorithm

Predictive
model

Predictive
model

a) Training

b) Prediction

2. Machine learning
• Classification vs regression (supervised learning):

Management of Multimedia Information in Internet - 5.3. Statistical NLP 9

Source: https://www.javatpoint.com/regression-vs-classification-in-machine-learning

Classification: process
of finding a function

which helps in
dividing the dataset

into classes based on
different parameters

Regression: process of finding a
function most closely

approximates the input data.
There are different regression

approaches, e.g.:
- Simple linear regression: using

lines (i.e., traditional slope-
intercept functions, y=mx+b) to

produce predictions
- Multiple linear regression:
using multi-variable linear

equations (e.g. planes)

https://www.javatpoint.com/regression-vs-classification-in-machine-learning

2. Machine learning
• Classification vs regression (supervised learning):

Management of Multimedia Information in Internet - 5.3. Statistical NLP 10

Source: https://towardsdatascience.com/regression-or-classification-linear-or-logistic-f093e8757b9c

Input variables in ML
algorithms are known
as features (individual

measurable property or
characteristic of a

phenomenon being
observed)

The main difference
between them is that
the output variable in

regression is numerical
(continuous) while that

for classification is
categorical (discrete)

https://towardsdatascience.com/regression-or-classification-linear-or-logistic-f093e8757b9c

2. Machine learning
• Clustering vs anomaly detection (unsupervised learning):

Management of Multimedia Information in Internet - 5.3. Statistical NLP 11

Source: https://www.geeksforgeeks.org/clustering-in-machine-learning/

Clustering: dividing the input data points into a
number of groups such that data points in the

same groups are more similar

Anomaly detection: identifying data in a observation
that differs majorly from the rest of the data

Source: https://medium.com/datadriveninvestor/how-machine-learning-
can-enable-anomaly-detection-eed9286c5306

https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://medium.com/datadriveninvestor/how-machine-learning-can-enable-anomaly-detection-eed9286c5306

Table of contents
1. Introduction
2. Machine learning
3. Classification

• Prediction model
• Model evaluation
• Metrics
• Algorithms

4. Text representation
5. Text classification
6. Takeaways

Management of Multimedia Information in Internet - 5.3. Statistical NLP 12

3. Classification
• Classification is a type of supervised learning approach in which we

try to identify to which of a set of categories a observation belongs
• The goal is to predict a class label, which is a choice from a

predefined list of possibilities
• In NLP, it is very relevant the case of text classification, i.e. choosing the

correct label for a given text document
• Classification is sometimes separated into:

• Binary classification, which is the special case of distinguishing between
exactly two classes (for instance, in NLP, decide whether an email is spam or
not)

• Multiclass classification, which is classification between more than two
classes (for instance, in NLP, deciding what the topic of a news article is from a
fixed list of topics such as “sports”, “technology”, or “politics”)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 13

3. Classification - Prediction model
• In classification, we want to build a prediction model using some

training data and then be able to make accurate predictions on new,
unseen data that has the same characteristics as the training set that
we used

• The best analogy is to think of the prediction model (or simply, model) as a
program (or class)

• We want to build a model that is able to generalize as accurately as
possible. For that, we will need to evaluate our model

• If a model is able to make accurate predictions on unseen data, we say it is
able to generalize from the training set to the test set

Management of Multimedia Information in Internet - 5.3. Statistical NLP 14

3. Classification - Model evaluation
• To measure if a prediction model is good enough (i.e. its accuracy),

we can use a method called train/test
• The procedure to carry out train/test is:
1. We split our dataset into two parts: the training set (e.g. 80% of the

dataset) and the testing set (e.g. the remaining 20% of the dataset)
2. We fit the model (i.e., create the model) using the training set
3. We test the model (i.e., check accuracy of the model) using the

testing set

Management of Multimedia Information in Internet - 5.3. Statistical NLP 15

Training set Testing set

Available dataset

3. Classification - Model evaluation
• Two typical problems can happen in our predictive model:

Management of Multimedia Information in Internet - 5.3. Statistical NLP 16

1. Overfitting. The model has learned the
training data so well that it cannot generalize
well to make predictions on new and unseen
data. These models are not good for predicting
new data

2. Underfitting. The model does not fit the
training data and therefore misses the trends
in the data. It implies that it has high-bias, and
therefore means that the model cannot be
generalized to new data

Source: https://medium.com/fintechexplained/the-problem-of-
overfitting-and-how-to-resolve-it-1eb9456b1dfd

https://medium.com/fintechexplained/the-problem-of-overfitting-and-how-to-resolve-it-1eb9456b1dfd

3. Classification - Model evaluation
• To achieve a better evaluation of our model and try to avoid these

problems, we can made cross validation
• In cross validation, yet another part of the dataset can be held out as

a so-called validation set:
• Training proceeds on the training set
• Evaluation is done on the validation set
• When the experiment seems to be successful, final evaluation is done on the

test set

Management of Multimedia Information in Internet - 5.3. Statistical NLP 17

Training set Testing set

Available dataset

Training set Testing setValidation set cross validation
(using “hold-out”)

train/test

3. Classification - Model evaluation

- We split the training data into k equally sized
sets (called folds). For instance, k=5 represents
80% or the data is used for training and the
rest 20% for is used for validation

- The model is trained using k−1 of the folds as
training data

- Then, the model is validated on the remaining
data (i.e., it is used as a test set to compute a
performance measure such as accuracy)

- The performance measure reported by k-fold
cross-validation is then the average of the
values computed in the loop

Management of Multimedia Information in Internet - 5.3. Statistical NLP 18

Source:
https://scikit-learn.org/stable/modules/cross_validation.html

• If out dataset is not large enough to carry out hold-out, we can make cross-
validation using the a popular technique called K-fold, which consists of:

https://scikit-learn.org/stable/modules/cross_validation.html

3. Classification - Metrics
• A confusion matrix is a table that we use to understand the

performance of a classification model

Management of Multimedia Information in Internet - 5.3. Statistical NLP 19

Source:
https://alearningaday.blog/2016/09/14/confusion-matrix/

TP (True Positive): The
classifier predicted positive

and it is (e.g. an email is
predicted as ham and it is)

TN (True Negative): The
classifier predicted

negative and it is (e.g. an
email is predicted as spam

and it is)

FN (False Negative): The
classifier predicted negative
but it is not (e.g. an email is

predicted as ham but it is
not)

FP (False Positive): The
classifier predicted positive
but it is not (e.g. an email is
predicted as spam but it is

not)

https://alearningaday.blog/2016/09/14/confusion-matrix/

3. Classification - Metrics
• Some of the metrics that can be derived from the confusion matrix are:
- Precision: ratio of the correct positive predictions (TP) divided by the

total number of positive experiments (TP + FP)

- Recall (also know as “sensitivity”): ratio of the correct positive
predictions (TP) divided by the total of positive predictions (TP + FN)

- F1 score: harmonic mean of precision and recall

Management of Multimedia Information in Internet - 5.3. Statistical NLP 20

F1 score = 2 * precision * recall / (precision + recall)

precision = TP / (TP + FP)

recall = TP / (TP + FN)

3. Classification - Algorithms
• An algorithm in ML is a procedure that is run on data to create a

prediction model
• The model represents what was learned by a ML algorithm

• Some supervised learning algorithms used to create classifiers are:
• Naive Bayes
• Support Vector Machines (SVMs)
• Decision Trees
• K-nearest neighbors (kNN)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 21

Table of contents
1. Introduction
2. Machine learning
3. Classification
4. Text representation

• Bag of words
• TF-IDF
• Cosine similarity
• Example: chatbot

5. Text classification
6. Takeaways

Management of Multimedia Information in Internet - 5.3. Statistical NLP 22

4. Text representation
• ML algorithms cannot work with raw text directly, and therefore, the

text must be converted into some mathematical data structures
• To transform text into numbers, we typically use the following

mathematical constructs:
- Scalars: Single numbers
- Vectors: One-dimensional array of numbers
- Matrices: Two-dimensional arrays of numbers
- Tensors: N-dimensional arrays of numbers

Management of Multimedia Information in Internet - 5.3. Statistical NLP 23

Source: Thanaki, J. (2017) Python Natural Language Processing. Packt Publishing.

4. Text representation
• From a given corpus (i.e. a list of documents), we can extract a

vocabulary (i.e. unique set of words)
• We can carry out a text processing pipeline to refine the vocabulary (or at least,

remove the stop words)
• Each word in the vocabulary are uses as features (individual

measurable properties) in our ML model
• Our objective is to represent each document as a feature vector (i.e.

one dimensional array of numbers). The whole corpus is represented
as feature matrix

• We are going to use two approaches for vectorize documents:
• Bag of words (BoW): Counting the occurrence of each word in a corpus
• TF-IDF: Counting the importance of each word in a corpus

Management of Multimedia Information in Internet - 5.3. Statistical NLP 24

4. Text representation - Bag of words
• The Bag-of-words (BoW) model is the simplest form of text

representation in numbers
• It is a vector representation of text which captures the word

occurrence frequencies in a text
• Each of the vector dimensions captures frequency

• It is called a “bag” of words, because any information about the order
or structure of words in the document is discarded

• The BoW model is commonly used in classification methods where the
occurrence of each word is used as a feature for training a classifier

Management of Multimedia Information in Internet - 5.3. Statistical NLP 25

4. Text representation - Bag of words
• Example of BoW. Supposing a corpus composed by 2 documents:

• Doc A: Mercury is the planet that is closest to the Sun. Mercury is the
smallest planet.

• Doc B: The warmest planet in the solar system is Mercury. Mercury is very close
to the Sun.

• Vocabulary: mercury, is, planet, close, sun, small, warm, solar, system

Management of Multimedia Information in Internet - 5.3. Statistical NLP 26

mercury is planet close sun small warm solar system

Doc A 2 3 2 1 1 1 0 0 0

Doc B 2 2 1 1 1 0 1 1 1

Doc A: (2, 3, 2, 1, 1, 1, 0, 0, 0)
Doc B: (2, 2, 1, 1, 1, 0, 1, 1, 1)

4. Text representation - Bag of words
• CountVectorizer is a class provided by scikit-learn that allows

us to calculate the BoW matrix of a given corpus
• It can be instantiated using a stop word list in a given language (to remove

these stop words from the vocabulary)

• The main methods in CountVectorizer are:
• fit(raw_documents) : learn vocabulary from the raw documents
• transform(raw_documents) : calculate BoW matrix
• fit_transform(raw_documents) : learn vocabulary and calculate BoW

matrix

Management of Multimedia Information in Internet - 5.3. Statistical NLP 27

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

4. Text representation - Bag of words
• Basic example using BoW:

Management of Multimedia Information in Internet - 5.3. Statistical NLP 28

from sklearn.feature_extraction.text import CountVectorizer

corpus = ["Computers can analyze text", "They do it using vectors and matrices",
"Computers can process massive amounts of text data"]

vectorizer = CountVectorizer(stop_words="english")
X = vectorizer.fit_transform(corpus)

print("Vocabulary", vectorizer.vocabulary_)
print("Feature names", vectorizer.get_feature_names())
print("BoW matrix", X.toarray())
print("BoW matrix shape", X.shape)

Vocabulary {'computers': 2, 'analyze': 1, 'text': 7, 'using': 8, 'vectors': 9,
'matrices': 5, 'process': 6, 'massive': 4, 'amounts': 0, 'data': 3}
Feature names ['amounts', 'analyze', 'computers', 'data', 'massive', 'matrices',
'process', 'text', 'using', 'vectors']
BoW matrix [[0 1 1 0 0 0 0 1 0 0]
[0 0 0 0 0 1 0 0 1 1]
[1 0 1 1 1 0 1 1 0 0]]
BoW matrix shape (3, 10)

Terms with a higher score in the BoW matrix, are
more frequent in the corpus

Each entry in the BoW matrix corresponds to the
count of a particular term (feature) in the documents

We typically use
the variable name

X for features

https://github.com/bonigarcia/nlp-examples

4. Text representation - TF-IDF
• The main drawback of the BoW model is that we do retain information

on the grammar of the sentences nor on the words ordering
• As a solution, the TF-IDF (Term Frequency-Inverse Document

Frequency) model has been proposed
• TF-IDF is a numerical statistic that is intended to reflect how important

a word is to a document in a collection or corpus
• The TF-IDF model allows to convert the textual representation of information

into a Vector Space Model (VSM)
• VSM is an algebraic model representing textual information as a vector (each

document within a corpus is represented as a point in space)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 29

4. Text representation - TF-IDF
• TF-IDF is calculates as:

• Term Frequency (TF) is a measure of how frequently a term (t) appears in a
document (d)

• Inverse Document Frequency (IDF) is a measure of how important a term is
• TF-IDF is calculated as the matrix multiplication of TF and IDF

Management of Multimedia Information in Internet - 5.3. Statistical NLP 30

𝑡𝑡𝑡𝑡𝑡𝑡,𝑑𝑑 =
𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑑𝑑
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑑𝑑

𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡,𝑑𝑑 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡

𝑡𝑡𝑡𝑡_𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡,𝑑𝑑 = 𝑡𝑡𝑡𝑡𝑡𝑡,𝑑𝑑 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡,𝑑𝑑

4. Text representation - TF-IDF
• TfidfVectorizer is a class provided by scikit-learn that allows us to

calculate the TF-IDF matrix for a given corpus
• The methods fit(), transform(), and fit_transform() are also available in

this class (just like in CountVectorizer)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 31

from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer(stop_words="english")
X = vectorizer.fit_transform(corpus)

print("Corpus", corpus)
print("Feature names", vectorizer.get_feature_names())
print("TF-IDF matrix", X.toarray())
print("TF-IDF matrix shape", X.shape)

Corpus ['Computers can analyze text', 'They do it using vectors and matrices', 'Computers can process massive amounts of
text data']
Feature names ['amounts', 'analyze', 'computers', 'data', 'massive', 'matrices', 'process', 'text', 'using', 'vectors']
TF-IDF matrix [[0. 0.68091856 0.51785612 0. 0. 0.
0. 0.51785612 0. 0.]

[0. 0. 0. 0. 0. 0.57735027
0. 0. 0.57735027 0.57735027]

[0.44036207 0. 0.3349067 0.44036207 0.44036207 0.
0.44036207 0.3349067 0. 0.]]

TF-IDF matrix shape (3, 10)

Terms with a higher score in the TF-IDF
matrix (normalized from 0 to 1), are

considered more important

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html

https://github.com/bonigarcia/nlp-examples
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html

4. Text representation - Cosine similarity
• Cosine similarity is a metric used to measure how similar the

documents are
• Mathematically, it measures the cosine of the angle between two vectors

projected in a multi-dimensional space
• Cosine similarity is a metric irrespective of documents size (the cosine of the

angle of these 2 vectors compare the angle, not the modules)

• The higher cosine similarity, the higher similarity between documents.
Or what is the same: the smaller the separation angle, the higher the
similarity

• Maximal similarity if they are parallel (angle 0°, cosine similarity = 1)
• Maximal difference if they are perpendicular (angle 90°, cosine similarity = 0

Management of Multimedia Information in Internet - 5.3. Statistical NLP 32

cos𝜃𝜃 =
𝑣𝑣1 · 𝑣𝑣2

𝑣𝑣1 𝑣𝑣2

4. Text representation - Cosine similarity
• The function cosine_similarity in scikit-learn allows to calculate

the cosine similarity
• We can use TF-IDF matrices as input of the cosine similarity function

Management of Multimedia Information in Internet - 5.3. Statistical NLP 33

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

vectorizer = TfidfVectorizer(stop_words="english")
X = vectorizer.fit_transform(corpus)

similarity_matrix = cosine_similarity(X)

print(corpus)
print(similarity_matrix)

['Computers can analyze text', 'They do it using vectors and matrices',
'Computers can process massive amounts of text data']
[[1. 0. 0.34686697]
[0. 1. 0.]
[0.34686697 0. 1.]]

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html

https://github.com/bonigarcia/nlp-examples
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html

4. Text representation - Cosine similarity
• Example which calculate the most similar sentence in two corpora:

Management of Multimedia Information in Internet - 5.3. Statistical NLP 34

import numpy as np

corpus_2 = ["Computers can store data"]

X_2 = vectorizer.transform(corpus_2)
similarity_matrix = cosine_similarity(X_2, X)

print("Comparing", corpus_2, "and", corpus)
print("The similaryty matrix is", similarity_matrix)

max_similary_value = np.amax(similarity_matrix)
max_similary_angle = np.rad2deg(np.arccos(max_similary_value))
max_similary_index = np.argmax(similarity_matrix)

print(f"The most similar sentence in both corpora are (angle {max_similary_angle}°)")
print(corpus[max_similary_index])
print(corpus_2[0])

Comparing ['Computers can store data'] and ['Computers can analyze text', 'They do it using
vectors and matrices', 'Computers can process massive amounts of text data']
The similaryty matrix is [[0.31348343 0. 0.5532461]]
The most similar sentence in both corpora are (angle 56.410004560487295°)
Computers can process massive amounts of text data
Computers can store data

We reuse the features
(vocabulary) from the first corpus

Internally, scikit-learn uses Numpy
arrays to store vectors and matrices

The function amax of Numpy returns the
maximum value along an array

The function argmax of Numpy returns the
indices of the maximum values along an array

https://github.com/bonigarcia/nlp-examples

4. Text representation - Example: chatbot
• The following example is basic example of chatbot
• As corpus, we use we real Amazon's Q&A data, public available at

http://jmcauley.ucsd.edu/data/amazon/qa/
• In particular, we use Q&A about electronics (data in JSON)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 35

{
"questionType":"yes/no",
"asin":"0594033926",
"answerTime":"Dec 27, 2013",
"unixTime":1388131200,
"question":"Is this cover the one that fits the old nook

color? Which I believe is 8x5.",
"answerType":"Y",
"answer":"Yes this fits both the nook color and the same-

shaped nook tablet"
}
{

"questionType":"yes/no",
"asin":"0594033926",
"answerTime":"Jan 5, 2015",
"unixTime":1420444800,
"question":"Does it fit Nook GlowLight?",
"answerType":"N",
"answer":"No. The nook color or color tablet"

}

http://jmcauley.ucsd.edu/data/amazon/qa/

4. Text representation - Example: chatbot
• First, we need to download the JSON data and store it in our Google

Drive (to be loaded in Colab)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 36

import ast
from google.colab import drive

questions = []
answers = []
drive.mount('/content/drive')

with open('/content/drive/My Drive/qa_Electronics.json') as f:
for line in f:
data = ast.literal_eval(line)
questions.append(data['question'].lower())
answers.append(data['answer'].lower())

Drive already mounted at /content/drive; to attempt to forcibly remount, call
drive.mount("/content/drive", force_remount=True).

https://github.com/bonigarcia/nlp-examples

4. Text representation - Example: chatbot

Management of Multimedia Information in Internet - 5.3. Statistical NLP 37

from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

vectorizer = TfidfVectorizer(stop_words="english")
X_questions = vectorizer.fit_transform(questions)

def conversation(user_input):
global vectorizer, answers, X_questions

X_user_input = vectorizer.transform(user_input)
similarity_matrix = cosine_similarity(X_user_input, X_questions)
max_similarity = np.amax(similarity_matrix)
angle = np.rad2deg(np.arccos(max_similarity))

if angle > 60:
return "sorry, I did not quite understand that"

else:
index_max_similarity = np.argmax(similarity_matrix)
return answers[index_max_similarity]

def main():
usr = input("Please enter your username: ")
print("Q&A support: Hi, welcome to Q&A support. How can I help you?")
while True:
user_input = input("{}: ".format(usr))
if user_input.lower() == "bye":
print("Q&A support: bye!")
break

else:
print("Q&A support: " + conversation([user_input]))

The logic of our chatbot is
defined in two Python functions

https://github.com/bonigarcia/nlp-examples

Table of contents
1. Introduction
2. Machine learning
3. Classification
4. Text representation
5. Text classification

• Naive Bayes
• Random Forest
• General workflow
• scikit-learn
• Final remarks

6. Takeaways

Management of Multimedia Information in Internet - 5.3. Statistical NLP 38

5. Text classification
• Text classification (supervised learning) is a relevant use case in NLP
• Classification problems can be divided into different types according to

the cardinality of the labels per document
• Binary: only two categories exist and they are mutually exclusive. For example,

spam detection (a message is considered “spam” or “ham”)
• Multi-class: multiple categories which are mutually exclusive. For example,

news that are considered as “sports”, “economics”, “technology”, etc.
• Multi-label: multiple categories with the possibility of multiple (or none)

assignments. For example, news that are considered “sports” and “economics”
at the same time

• There are many different algorithms used in text classification. We are
going to study two of them: Naive Bayes and Random Forest

Management of Multimedia Information in Internet - 5.3. Statistical NLP 39

5. Text classification - Naive Bayes
• Naive Bayes is a popular classification algorithm for based on the

Bayes’ theorem
• The Bayes’ theorem describes the probability of an event, based on

prior knowledge of conditions that might be related to the event. It can
be represented as follows:

• Here, A and B are events:
• P(A|B) is the probability of A given B
• P(B|A) is the probability of B given A
• P(A) is the independent probability of A
• P(B) is the independent probability of B

Management of Multimedia Information in Internet - 5.3. Statistical NLP 40

𝑃𝑃 𝐴𝐴 𝐵𝐵 =
𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)

5. Text classification - Naive Bayes
• Let’s suppose we have a Deck of Cards, we wish to find out the

“Probability of the Card we picked at random to be a King given that it
is a Face Card”

• We can solve this problem using the Bayes’ Theorem, as follows:

• Where:
• P(King) = 4/52 (4 Kings out of the 52 total cards)
• P(Face/King) = 1 (all Kings are face cards)
• P(Face) = 12/52 (12 cards: Kings, Queens, and Jacks in ♠♣♥♦)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 41

𝑃𝑃 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹|𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)𝑃𝑃(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)

𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) =
1 · 4/52
12/52 = 1/3

5. Text classification - Naive Bayes
• Naive Bayes classifiers are a collection of classification algorithms

based on Bayes’ Theorem
• These classifiers are the commonly applied to text classification
• For a text classification, the Naive Bayes theorem can be interpreted as

the probability of predicting a target with class k given feature
matrix X, and is given by the probability of predicting feature
matrix X given a certain class of y times the probability of belonging to
a certain class k

Management of Multimedia Information in Internet - 5.3. Statistical NLP 42

𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑋𝑋 =
𝑃𝑃(𝑋𝑋|𝑦𝑦 = 𝑘𝑘)𝑃𝑃(𝑦𝑦 = 𝑘𝑘)

𝑃𝑃(𝑋𝑋)

5. Text classification - Random Forest
• Random Forest (RF) is a supervised learning ML algorithm that

produces, even without hyper-parameter tuning, a great result for text
classification

Management of Multimedia Information in Internet - 5.3. Statistical NLP 43

• The RF algorithm is composed of
different decision trees, each with the
same nodes, but using different data
that leads to different leaves

• It merges the decisions of multiple
decision trees in order to find an
answer, which represents the average
of all these decision trees

Source:
https://medium.com/capital-one-tech/random-forest-algorithm-

for-machine-learning-c4b2c8cc9feb

https://medium.com/capital-one-tech/random-forest-algorithm-for-machine-learning-c4b2c8cc9feb

5. Text classification - General workflow
• The general workflow of text classification is the following:
1. Define the problem (e.g. binary or multiclass classification)
2. Select (or create) a dataset (or corpus), i.e. a collection of text documents

• In Python it will be stored a as list of string
3. Generate vocabulary and select labels

• Word in the vocabulary are uses as features
4. Convert features in vectors (e.g. using BoW or TF-IDF matrices)
5. Divide dataset in training and test sets (also validation set in cross evaluation)
6. Select algorithm (e.g. Naive Bayes, Random Forest)
7. Train model (using the training set)
8. Evaluate the model (using the test-set if plenty of data, or K-Fold if few samples)

• Calculate metrics such as: precision, recall, F1-score, accuracy, confusion matrix
9. Use unseen data to generate new predictions
10. Serialize model (to store it persistently)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 44

5. Text classification - General workflow
• A simplify version of that workflow is the following:

Management of Multimedia Information in Internet - 5.3. Statistical NLP 45

Supervised
learning

algorithm

Predictive
model

Training
documents

Training
documents

Training
documents

LabelsLabelsLabels

Feature
matrix

New
document

Feature
vector

Predicted
label

a) Training

b) Prediction

5. Text classification - scikit-learn
• We use the library scikit-learn to implement the previous workflow to

implement text classifiers
• In scikit-learn, an estimator for classification is a Python object that

implements the methods fit(X_train, y) and predict(X_test)
• Here, X and y contain the features and labels of our classification dataset

• We are going to see the following examples:
1. Binary classifier: to predict SMS spam (or ham) messages
2. Multiclass classifier: to predict news categories (business, entertainment,

politics, sport, technology)
3. Sentiment analysis: to predict positive or negative texts

Management of Multimedia Information in Internet - 5.3. Statistical NLP 46

5. Text classification - scikit-learn
• Binary classifier (spam detector)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 47

Dataset

from google.colab import drive
import pandas as pd

drive.mount("/content/drive")

y_names = ["label", "message"]

dataset = pd.read_csv("/content/drive/My Drive/data/sms_spam/SMSSpamCollection.txt", sep="\t", names=y_names)

y = dataset.get(y_names[0]).tolist()
raw_dataset = dataset.get(y_names[1]).tolist()

dataset.head()

Drive mounted at /content/drive.
label message
0 ham Go until jurong point, crazy.. Available only ...
1 ham Ok lar... Joking wif u oni...
2 spam Free entry in 2 a wkly comp to win FA Cup fina...
3 ham U dun say so early hor... U c already then say...
4 ham Nah I don't think he goes to usf, he lives aro...

We get the dataset for this example from the
Department of Telematics, School of Electrical and Comput

er Engineering at University of Campinas, Brazil
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

The dataset is stored on Google
Drive. Then, we use Pandas to parse

the dataset content

https://github.com/bonigarcia/nlp-examples
http://www.dt.fee.unicamp.br/%7Etiago/smsspamcollection/

5. Text classification - scikit-learn
• Binary classifier (spam detector)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 48

Text preprocessing

import nltk
from nltk.tokenize import regexp_tokenize
from nltk.stem.snowball import SnowballStemmer
from nltk.corpus import stopwords
nltk.download("stopwords")

dataset = []
stemmer = SnowballStemmer("english")
stopwords_en = stopwords.words("english")

for i in range(0, len(raw_dataset)):
tokens = regexp_tokenize(str(raw_dataset[i]), r"\w+")
stems = [stemmer.stem(token) for token in tokens]
words_no_stopwords = [word for word in stems if word not in stopwords_en]
document = ' '.join(words_no_stopwords)
dataset.append(document)

Drive mounted at /content/drive.

To create the vocabulary, we
implement a simple text processing
pipeline composed by: tokenization,
stemming, and removing stop words

https://github.com/bonigarcia/nlp-examples

5. Text classification - scikit-learn
• Binary classifier (spam detector)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 49

Feature extraction (converting text to vectors)

from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(dataset).toarray()

In this example, we use TF-IDF to create
the features matrix

Split training and testing sets

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

Then, we split the dataset in training set
(80%) and test set (20%), shuffling the data

before splitting (the seed 0 is used the
random split algorithm)

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

https://github.com/bonigarcia/nlp-examples
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

5. Text classification - scikit-learn
• Binary classifier (spam detector)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 50

Train model

from sklearn.naive_bayes import MultinomialNB
classifier = MultinomialNB()

classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)

We selected the Naive Bayes for
multinomial models algorithm

https://github.com/bonigarcia/nlp-examples

5. Text classification - scikit-learn
• Binary classifier (spam detector)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 51

[[955 0]
[33 127]]

precision recall f1-score support

ham 0.97 1.00 0.98 955
spam 1.00 0.79 0.89 160

accuracy 0.97 1115
macro avg 0.98 0.90 0.93 1115

weighted avg 0.97 0.97 0.97 1115

0.9704035874439462

Model evaluation

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
print(accuracy_score(y_test, y_pred))

In this case, we obtain a
97% accuracy score

https://github.com/bonigarcia/nlp-examples

5. Text classification - scikit-learn
• Binary classifier (spam detector)

Management of Multimedia Information in Internet - 5.3. Statistical NLP 52

Enter a message: You win the first prize.
The pedicted class for that message is: ['spam']

Predict unseen data

unseen_sentence = input("Enter a message: ")
X_unseen = vectorizer.transform([unseen_sentence]).toarray()
y_unseen = classifier.predict(X_unseen)

print("The pedicted class for that message is:", y_unseen)

Now, we can use the model to
predict new unseen data

Model serialization

import pickle

with open("binary_classifier.pickle", "wb") as pickle_file:
pickle.dump(classifier, pickle_file)

with open("binary_classifier.pickle", "rb") as serialized_model:
loaded_model = pickle.load(serialized_model)

Optionally, we can serialize/deserialize the resulting
model (using the Python’s module pickle)

https://github.com/bonigarcia/nlp-examples

5. Text classification - scikit-learn
• Multiclass classifier (types of news):

Management of Multimedia Information in Internet - 5.3. Statistical NLP 53

Mounted at /content/drive
Number of documents in the dataset: 2225
Labels (automatically generated from subfolder names):

business
entertainment
politics
sport
tech

Dataset

from google.colab import drive
from sklearn.datasets import load_files

drive.mount("/content/drive")

Raw data (BCC article datasets) obtained from the Insight Project
http://mlg.ucd.ie/datasets/bbc.html
loaded_data = load_files("/content/drive/My Drive/data/bbc")

raw_dataset, y, y_names = loaded_data.data, loaded_data.target, loaded_data.target_names

print("Number of documents in the dataset:", len(raw_dataset))
print("Labels:")
for label in y_names:
print("\t", label)

For this example, we got the dataset
from the BBC article dataset

from the Insight Project:
http://mlg.ucd.ie/datasets/bbc.html

We load the data using the function of
scikit-learn load_files, which

individual samples are assumed to be
files stored a two levels folder structure

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_files.html

https://github.com/bonigarcia/nlp-examples
http://mlg.ucd.ie/datasets/bbc.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_files.html

5. Text classification - scikit-learn
• Multiclass classifier (types of news):

Management of Multimedia Information in Internet - 5.3. Statistical NLP 54

Train model

from sklearn.ensemble import RandomForestClassifier

classifier = RandomForestClassifier()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)

For this example, we use a different
algorithm: Random Forest

https://github.com/bonigarcia/nlp-examples

5. Text classification - scikit-learn
• Sentiment analysis (positive or negative):

Management of Multimedia Information in Internet - 5.3. Statistical NLP 55

Dataset

from google.colab import drive
from sklearn.datasets import load_files

drive.mount("/content/drive")

Raw data (movie reviews) obtained from the Cornell Natural Language Processing Group
http://www.cs.cornell.edu/people/pabo/movie-review-data/
loaded_data = load_files("/content/drive/My Drive/data/txt_sentoken")

raw_dataset, y, y_names = loaded_data.data, loaded_data.target, loaded_data.target_names

print("Number of documents in the dataset:", len(raw_dataset))
print("Labels (automatically generated from subfolder names):")
for label in y_names:

print("\t", label)

Simply changing the dataset, we can convert the
example before in a sentiment analysis (using text

for positive or negative reviews)

Mounted at /content/drive
Number of documents in the dataset: 2000
Labels (automatically generated from subfolder names):

neg
pos

https://github.com/bonigarcia/nlp-examples

5. Text classification - Final remarks
• Many other kinds of text classifiers can be done with scikit-learn
• There are many hyperparameters that can be set to tweak the

performance of the model, but we are choosing the default ones in the
previous examples

• We can choose a different vectorizer (e.g. BoW) to try to improve the
accuracy of our model

• We can choose alternative algorithms, such as Decision Trees or
Support Vector Machine (SVM)

• If our dataset is small, we can use cross-validation (e.g. using K-folds)
for the model evaluation

Management of Multimedia Information in Internet - 5.3. Statistical NLP 56

Table of contents
1. Introduction
2. Machine learning
3. Classification
4. Text representation
5. Text classification
6. Takeaways

Management of Multimedia Information in Internet - 5.3. Statistical NLP 57

6. Takeaways
• Statistical NLP is based on Machine Learning (ML)
• ML is about computer algorithms that improve automatically through

experience
• Text classification is used to implement different NLP applications

types, such as binary classifiers (e.g. spam detector), among others
• To implement a text classifier we need a training set to fit a model

(using a ML algorithm, such Naive Bayes or Random Forest). Then, we
use a test set to validate the model, calculating metrics such as the
accuracy, precision, recall, or F1-score

• Two of the most used ML algorithms for text classification are Random
Forest and Multinomial Naive Bayes

Management of Multimedia Information in Internet - 5.3. Statistical NLP 58

	Management of Multimedia Information in Internet
	Table of contents
	1. Introduction
	Table of contents
	2. Machine learning
	2. Machine learning
	2. Machine learning
	2. Machine learning
	2. Machine learning
	2. Machine learning
	2. Machine learning
	Table of contents
	3. Classification
	3. Classification - Prediction model
	3. Classification - Model evaluation
	3. Classification - Model evaluation
	3. Classification - Model evaluation
	3. Classification - Model evaluation
	3. Classification - Metrics
	3. Classification - Metrics
	3. Classification - Algorithms
	Table of contents
	4. Text representation
	4. Text representation
	4. Text representation - Bag of words
	4. Text representation - Bag of words
	4. Text representation - Bag of words
	4. Text representation - Bag of words
	4. Text representation - TF-IDF
	4. Text representation - TF-IDF
	4. Text representation - TF-IDF
	4. Text representation - Cosine similarity
	4. Text representation - Cosine similarity
	4. Text representation - Cosine similarity
	4. Text representation - Example: chatbot
	4. Text representation - Example: chatbot
	4. Text representation - Example: chatbot
	Table of contents
	5. Text classification
	5. Text classification - Naive Bayes
	5. Text classification - Naive Bayes
	5. Text classification - Naive Bayes
	5. Text classification - Random Forest
	5. Text classification - General workflow
	5. Text classification - General workflow
	5. Text classification - scikit-learn
	5. Text classification - scikit-learn
	5. Text classification - scikit-learn
	5. Text classification - scikit-learn
	5. Text classification - scikit-learn
	5. Text classification - scikit-learn
	5. Text classification - scikit-learn
	5. Text classification - scikit-learn
	5. Text classification - scikit-learn
	5. Text classification - scikit-learn
	5. Text classification - Final remarks
	Table of contents
	6. Takeaways

