
Mobile Applications
9. Introduction to cross-platform apps

development

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction

2. React

3. React Native

4. Flutter

5. Takeaways

Mobile Applications - 9. Introduction to cross-platform apps development 2

1. Introduction

Mobile Applications - 9. Introduction to cross-platform apps development 3

• As we have learned, there are different ways for developing mobile apps:

1. Native development involves creating apps specifically for a given platform
(Android or iOS) using platform-specific programming languages and tools

2. Hybrid development combines web technologies (HTML, CSS, JavaScript)
with a WebView native container to create apps that work across multiple
platforms

3. Cross-platform development uses frameworks that allow developers to
write code once and deploy it on multiple platforms
− Unlike hybrid apps, cross-platform apps are compiled into native code

4. Progressive Web Apps (PWAs) are websites that behave like apps
− They run in a browser but can be installed on a device and used offline

5. Low-Code/No-Code Platforms that allow non-developers to create apps
using drag-and-drop interfaces and pre-built templates

1. Introduction

Mobile Applications - 9. Introduction to cross-platform apps development 4

App type Pros Cons

Native + High performance and responsiveness
+ Best user experience and design
consistency

- Requires separate codebases for each
platform (more development time and cost)

Hybrid + Easy for developers familiar with web
development
+ Single codebase for multiple platforms

- Slower performance compared to native apps
- Limited access to advanced device features

Cross-
platform

+ Saves development time and cost with a
single codebase
+ Good performance for most apps

- Performance may not match fully native apps
- Limited access to certain platform-specific
features (depending on the framework)

PWAs + No app store submission required
+ Can work on any device with a browser
+ Cost-effective and fast to develop

- Limited access to device hardware and native
features
- Can't match the performance of native apps

Low-Code/
No-Code

+ Speeds up development for simple apps
+ Requires little to no programming
knowledge

- Limited flexibility and scalability for complex
apps

This unit we study the
basics of React Native

and Flutter

Table of contents
1. Introduction

2. React
- Sandbox

- Local setup

- Frameworks

- TypeScript

3. React Native

4. Flutter

5. Takeaways

Mobile Applications - 9. Introduction to cross-platform apps development 5

2. React
• React is an open source front-end JavaScript library for building user

interfaces (UIs) based on components created by Meta (formerly
Facebook)

− It is typically used to build Single-Page Application (SPA)

− SPAs are web applications that interacts with the user by dynamically
rewriting the current web page with new data from the web server
• Some popular SPAs are the web versions of Instagram, Facebook, Netflix, or Airbnb

Mobile Applications - 9. Introduction to cross-platform apps development 6

https://react.dev/

https://react.dev/

2. React
• The key features of React are the following:

− Component-based
• React apps are built using reusable components (like Lego blocks)

• Each component manages its own state and logic

− JSX (JavaScript XML)
• JSX allows us to write HTML elements in JavaScript and place them in the DOM

(Document Object Model)

• It is not mandatory, but recommended for easier development

− Virtual DOM (lightweight, in-memory representation of the real DOM)
• React uses a Virtual DOM to optimize updates, making rendering faster

• Instead of updating the real DOM directly, React compares changes in memory first

− Rich ecosystem
• Works well with libraries and frameworks like Redux (state management), React Router

(navigation), or Next.js (server-side rendering)

Mobile Applications - 9. Introduction to cross-platform apps development 7

https://redux.js.org/
https://reactrouter.com/
https://nextjs.org/

2. React
• There are different ways to create React apps:

1. Using a sandbox
− A sandbox refers is an isolated, browser-based environment where we can

write, run, and test React code without setting up a local project
• It is a convenient way to quickly prototype without setting anything up locally

• A popular sandbox is CodeSandbox

2. Setting up a local project
− Using a build tool (convenient for basic projects)

• The classical tool is called Create React App, but it is deprecated nowadays

• Modern options are: Vite, Parcel, or Rsbuild

− Using a framework (convenient for complex projects)
• Provide enhanced features (e.g., SEO, routing, optimizations, and others)

• For example: Next.js, Remix, Gatsby, or Expo

Mobile Applications - 9. Introduction to cross-platform apps development 8

https://codesandbox.io/
https://create-react-app.dev/
https://vite.dev/
https://parceljs.org/
https://rsbuild.dev/
https://nextjs.org/
https://remix.run/
https://www.gatsbyjs.com/
https://expo.dev/

2. React - Sandbox
• There are basic sandboxes examples in the React doc using JSX, e.g.:

Mobile Applications - 9. Introduction to cross-platform apps development 9

function ({ name }) {
return <h1>Hello, {name}</h1>;

}

let App = function App() {
return <Greeting name="world" />

}

https://react.dev/learn

function MyButton() {
return (

<button>
I'm a button

</button>
);

}

let App = function MyApp() {
return (

<div>
<h1>Welcome to my app</h1>
<MyButton />

</div>
);

}

React components are JavaScript
functions that return markup
(Greeting and MyButton in

these examples)

https://react.dev/learn

2. React - Local setup
• To set up a local React project, the requirements are:

1. Node.js
− Node.js is an open source, cross-platform JavaScript runtime environment

that enables the execution of JavaScript code outside a web browser

− Node.js comes with NPM, its default package manager

2. Code editor (not mandatory, but highly recommended)
− One of the most popular IDEs for React is Visual Studio Code

− Other alternatives are: WebStorm, Sublime Text, or Atom

Mobile Applications - 9. Introduction to cross-platform apps development 10

> node --version
v22.15.0

> npm --version
10.6.0

After install Node.js, we
can execute node and npm

as command-line toolshttps://nodejs.org/

https://code.visualstudio.com/

https://nodejs.org/
https://code.visualstudio.com/

2. React - Local setup
• For instance, we can use Vite to set up a local React project:

Mobile Applications - 9. Introduction to cross-platform apps development 11

> npm create vite@latest hello-world-vite -- --template react

> cd hello-world-vite

> npm install

> npm run dev

https://vite.dev/

https://react.dev/learn/build-a-react-app-from-scratch

https://vite.dev/
https://react.dev/learn/build-a-react-app-from-scratch

2. React - Frameworks
• React frameworks support all the features required to deploy and

scale an app in production
− For example, Next.js:

Mobile Applications - 9. Introduction to cross-platform apps development 12

> npx create-next-app@latest

? What is your project named? » my-app
? Would you like to use TypeScript? » No / Yes
? Would you like to use ESLint? » No / Yes
? Would you like to use Tailwind CSS? » No / Yes
? Would you like your code inside a `src/` directory? » No / Yes
? Would you like to use App Router? (recommended) » No / Yes
? Would you like to use Turbopack for `next dev`? » No / Yes
? Would you like to customize the import alias (`@/*` by default)? » No / Yes

Creating a new Next.js app in C:\Users\boni\dev\react\my-app.

> cd my-app

> npm run dev

https://nextjs.org/

npx is a CLI tool that comes with npm used
to execute Node.js packages without

installing them globally or locally

https://nextjs.org/

2. React - TypeScript
• JavaScript (JS) is a high-level, often just-in-time compiled programming

language
− JavaScript was first released on Netscape 2 (a web browser) in 1996
− It is most well-known as the scripting language for web pages, being one of the core

technologies of the Web, alongside HTML and CSS
− It has dynamic typing, i.e., type of a variable is known at runtime. Type checking occurs

also at runtime

• TypeScript (TS) is an open source programming language developed by
Microsoft, first released in 2012

− TypeScript is often referred to as a superset or extension of JavaScript
− TypeScript extends JavaScript by adding static typing, i.e., the type of a variable is

known at compile-time. This feature help developers build large-scale, robust
applications more effectively

− Unlike JavaScript, TypeScript can’t be executed directly in a browser – it must be
transpiled into JavaScript first

Mobile Applications - 9. Introduction to cross-platform apps development 13

2. React - TypeScript
• The following table summarizes the advantages and disadvantages of

using JavaScript and TypeScript in React development:

Mobile Applications - 9. Introduction to cross-platform apps development 14

JavaScript TypeScript

Pros • Faster development time: JavaScript is a
dynamic and flexible language that allows
developers to build applications quickly

• Easier to learn: Shallow learning curve

• Code quality: TypeScript adds static typing to
JavaScript, which helps catch bugs at compile-time

• Developer experience: Features such as auto-
completion and error checking

Cons • No static typing: JavaScript is a dynamically
typed, which can lead to bugs at runtime

• Code become complex: Without the benefit of
static typing, it can be challenging to maintain
code quality and readability as applications grow

• Steep learning curve: TypeScript is more difficult to
learn than JavaScript

• Longer development time: TypeScript’s additional
syntax and static typing can slow down
development time, especially for small projects

Table of contents
1. Introduction

2. React

3. React Native
- Expo

- Hello World

- Views

- Core components

4. Flutter

5. Takeaways

Mobile Applications - 9. Introduction to cross-platform apps development 15

3. React Native
• React Native is an open source cross-platform app framework for

building mobile apps (Android and iOS)
− Internally it uses the React library to manage the components. For that

reason, we can use JavaScript or TypeScript to develop React Native apps

− Like React, React Native is maintained by Meta (formerly Facebook) and a
community of individual developers and companies

Mobile Applications - 9. Introduction to cross-platform apps development 16

https://reactnative.dev/

https://reactnative.dev/

3. React Native - Expo
• The recommended way to set up a local React Native project is using a

Framework (i.e., a toolbox with all the necessary features to build
production ready apps) like Expo

• Expo is a framework and platform for building and deploying universal
React Native apps

• Expo Go is an open source mobile app for testing React Native apps on any
Android or iOS device

− It is available on both the Android Play Store and iOS App Store
• Android Play Store (Android Lollipop and greater)
• iOS App Store (iOS 13 and greater)

Mobile Applications - 9. Introduction to cross-platform apps development 17

https://expo.dev/clienthttps://expo.dev/

https://play.google.com/store/apps/details?id=host.exp.exponent
https://apps.apple.com/app/expo-go/id982107779
https://expo.dev/client
https://expo.dev/

3. React Native - Hello world
• We can create a basic React Native app with Expo using npx as

follows:

Mobile Applications - 9. Introduction to cross-platform apps development 18

> npx create-expo-app hello-world

√ Downloaded and extracted project files.
√ Installed JavaScript dependencies.

✅ Your project is ready!

To run your project, navigate to the directory and run one of the following npm
commands.

- cd hello-world
- npm run android
- npm run ios # you need to use macOS to build the iOS project - use the Expo app if
you need to do iOS development without a Mac
- npm run web

3. React Native - Hello world

Mobile Applications - 9. Introduction to cross-platform apps development 19

> npm run android

> hello-world@1.0.0 android
> expo start --android

Starting project at C:\Users\boni\Documents\dev\react-native-examples\hello-world
Starting Metro Bundler
› Opening exp://10.118.107.205:8081 on Pixel_4_API_30
▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
█ ▄▄▄▄▄ █ ▀▀▄ ██▄█ ▄▄▄▄▄ █
█ █ █ ███ ▄▄ ▄▀██ █ █ █
█ █▄▄▄█ █ ▄▄ █▄██ █ █▄▄▄█ █
█▄▄▄▄▄▄▄█ █ ▀ █▄▀ █▄▄▄▄▄▄▄█
█ ▄█▀▄▄▀ ███ █ ▄▄██ █
██▀ ▀▀█▄ ▀▀█▄█▄▀▄▄ ▄ ▀▄▄█▄█
████▀▄█▄▀█ █▄ ▀ █ ▄██▀ ▀█
█▄▄ █ ▄▄▄██▀ █▄▄█ ▄▄▄▄█▀▄█
█▄▄▄█▄█▄█ █▄▀ ▄▄▄ ▀█ █
█ ▄▄▄▄▄ █▀▄▄▄█▄▄█ █▄█ ██▀▄█
█ █ █ ██ █ ██ ▄ ▄▄ ▀ ██
█ █▄▄▄█ █ █ ▄▄▄▄█▀█▀ ▄██▄▄█
█▄▄▄▄▄▄▄█▄▄████▄▄▄▄▄▄▄███▄█

› Metro waiting on exp://10.118.107.205:8081
› Scan the QR code above with Expo Go (Android) or the Camera app (iOS)

› Using Expo Go
› Press s │ switch to development build

› Press a │ open Android
› Press w │ open web

› Press j │ open debugger
› Press r │ reload app
› Press m │ toggle menu
› shift+m │ more tools
› Press o │ open project code in your editor

› Press ? │ show all commands

Logs for your project will appear below. Press Ctrl+C to exit.
Android Bundled 834ms index.js (644 modules)

To run our app locally,
we need a running AVD

(e.g., executed with
Android Studio)

3. React Native - Hello world

Mobile Applications - 9. Introduction to cross-platform apps development 20

import { StatusBar } from 'expo-status-bar';
import { StyleSheet, Text, View } from 'react-native';

export default function App() {
return (

<View style={styles.container}>
<Text>Open up App.js to start working on your app!</Text>
<StatusBar style="auto" />

</View>
);

}

const styles = StyleSheet.create({
container: {

flex: 1,
backgroundColor: '#fff',
alignItems: 'center',
justifyContent: 'center',

},
});

https://github.com/bonigarcia/react-native-examples/tree/main/hello-world

3. React Native - Views
• A view is the basic building block of UI both in Android and iOS

− A view is a rectangular portion of the screen which can be used to display text,
images, etc.

• With React Native, we invoke these views with JavaScript using React
components

• At runtime, React Native creates the corresponding Android and iOS views
for those components

Mobile Applications - 9. Introduction to cross-platform apps development 21

https://reactnative.dev/docs/intro-react-native-components

https://reactnative.dev/docs/intro-react-native-components

3. React Native - Core Components
• React Native comes with a set of essential, ready-to-use native

components to building ours app. These components are called React
Native’s Core Components

Mobile Applications - 9. Introduction to cross-platform apps development 22

REACT NATIVE UI
COMPONENT

ANDROID VIEW IOS VIEW WEB ANALOG DESCRIPTION

<View> <ViewGroup> <UIView> A non-scrolling <div>
A container that supports layout with
flexbox, style, some touch handling, and
accessibility controls

<Text> <TextView> <UITextView> <p>
Displays, styles, and nests strings of text
and even handles touch events

<Image> <ImageView> <UIImageView> Displays different types of images

<ScrollView> <ScrollView> <UIScrollView> <div>
A generic scrolling container that can
contain multiple components and views

<TextInput> <EditText> <UITextField> <input type="text"> Allows the user to enter text

https://reactnative.dev/docs/intro-react-native-components

https://reactnative.dev/docs/intro-react-native-components

3. React Native - Core Components

Mobile Applications - 9. Introduction to cross-platform apps development 23

import React from 'react';
import { StyleSheet, View, Text, Image, TextInput } from 'react-native';

const App = () => {
return (
<View style={styles.container}>

<Text>Some text</Text>
<Image source={require('./assets/react.png')} style={{width: 200, height: 200}} />
<TextInput
style={{
width: 200,

height: 40,
borderColor: 'gray',
borderWidth: 1,

}}
defaultValue="Type in me"

/>
</View>

);
};

export default App;

const styles = StyleSheet.create({
container :{

justifyContent: 'center', //Centered horizontally
alignItems: 'center', //Centered vertically
flex:1

}
});

https://github.com/bonigarcia/react-native-examples

Table of contents
1. Introduction

2. React

3. React Native

4. Flutter
- Setup

- Dart

- Widgets

- Hello World

- Examples

5. Takeaways

Mobile Applications - 9. Introduction to cross-platform apps development 24

4. Flutter
• Flutter is an open source cross-platform framework created by

Google used to develop applications for mobile (Android, iOS), web,
and desktop from a single codebase

• Flutter applications are written in Dart language
− Dart programming language developed by Google since 2011

− Dart aims to help developers build UIs effectively

− Dart is open source, object-oriented, and statically typed

Mobile Applications - 9. Introduction to cross-platform apps development 25

https://flutter.dev/ https://dart.dev/

https://flutter.dev/
https://dart.dev/

4. Flutter - Setup
• To install Flutter and Dart in our machine, we use the following

tutorial:
− https://docs.flutter.dev/get-started/install

• Once it is installed, we can execute the command-line tools flutter
and dart:

• We can use the following command to verify our installation:

Mobile Applications - 9. Introduction to cross-platform apps development 26

> flutter --version
Flutter 3.29.3 • channel stable • https://github.com/flutter/flutter.git
Framework • revision ea121f8859 (2 weeks ago) • 2025-04-11 19:10:07 +0000
Engine • revision cf56914b32
Tools • Dart 3.7.2 • DevTools 2.42.3

> dart --version
Dart SDK version: 3.7.2 (stable) (Tue Mar 11 04:27:50 2025 -0700) on "windows_x64"

> flutter doctor -v

https://docs.flutter.dev/get-started/install

4. Flutter - Dart
• The key features of Dart are the following:

− Compiled language
• Can be compiled to native machine code (for mobile/desktop apps) or JavaScript (for

web apps)

• Uses Just-In-Time (JIT) compilation during development for hot reload

• Uses Ahead-Of-Time (AOT) compilation for production for optimized performance

− Object-oriented and supports for functional programming
• Classes, inheritance, interfaces, mixins

• Supports lambdas (anonymous functions), higher-order functions, and collections (like
map, filter, reduce)

− Static typing (types are checked at compile time)

− Null safety (to prevent null reference exceptions)

− Asynchronous programming with async/await
• Built-in support for futures and streams for handling async operations

Mobile Applications - 9. Introduction to cross-platform apps development 27

4. Flutter - Dart
• Hello world:

• Variables and data types:

Mobile Applications - 9. Introduction to cross-platform apps development 28

void main() {
print('Hello, Dart World!');

}

void main() {
// Variables (type inference with 'var')
var name = "Alice"; // String

int age = 25; // Explicit type
double height = 5.9;
bool isStudent = true;

// Dynamic type (can change at runtime)
dynamic dynamicVar = "Hello";
dynamicVar = 42; // Now an int

// Constants (compile-time)
const PI = 3.14;
final currentTime = DateTime.now(); // Runtime constant

print("$name is $age years old"); // String interpolation
}

> dart variables_data_types.dart
Alice is 25 years old

> dart hello_world.dart
Hello, Dart World!

https://dart.dev/language

https://github.com/bonigarcia/flutter-examples/tree/main/dart
https://dart.dev/language

4. Flutter - Dart
• Control flow and loops:

Mobile Applications - 9. Introduction to cross-platform apps development 29

void main() {
int score = 85;

// If-else
if (score >= 90) {
print("A");

} else if (score >= 80) {
print("B"); // Output: B

} else {
print("C");

}

// For loop
for (var i = 0; i < 3; i++) {
print(i); // 0, 1, 2

}

// While loop
int count = 0;
while (count < 2) {
print("Count: $count"); // Count: 0, Count: 1
count++;

}

// Switch-case
String grade = "B";
switch (grade) {
case "A":
print("Excellent!");
break;

case "B":
print("Good!"); // Output: Good!
break;

default:
print("Unknown");

}
}

> dart control_flow.dart
B
0
1
2
Count: 0
Count: 1
Good!

https://github.com/bonigarcia/flutter-examples/tree/main/dart

4. Flutter - Dart
• Functions:

Mobile Applications - 9. Introduction to cross-platform apps development 30

// Basic function
void greet(String name) {
print("Hello, $name!");

}

// Optional positional parameters
void sayHello(String name, [String? title]) {
print("Hello, ${title ?? ''} $name");

}

// Named parameters (with defaults)
void describe({String name = "User", int age = 0}) {
print("$name is $age years old");

}

// Main function
void main() {
greet("Alice"); // Hello, Alice!

describe(name: "Bob", age: 30); // Bob is 30 years old.

sayHello("Alice"); // Hello, Alice
sayHello("Alice", "Dr."); // Hello, Dr. Alice

// Arrow function (short syntax)
int add(int a, int b) => a + b;
print(add(2, 3)); // 5

}

> dart functions.dart
Hello, Alice!
Bob is 30 years old.
Hello, Alice
Hello, Dr. Alice
5

https://github.com/bonigarcia/flutter-examples/tree/main/dart

4. Flutter - Dart
• Collections (list, sets, maps):

Mobile Applications - 9. Introduction to cross-platform apps development 31

void main() {
// List (ordered, mutable)
List<String> fruits = ["Apple", "Banana"];
fruits.add("Cherry");
print(fruits[1]); // Banana

// Set (unique items)
Set<int> numbers = {1, 2, 2, 3}; // {1, 2, 3}
print(numbers.contains(2)); // true

// Map (key-value pairs)
Map<String, int> ages = {
"Alice": 25,
"Bob": 30,

};
print(ages["Bob"]); // 30

}

> dart collections.dart
Banana
true
30

https://github.com/bonigarcia/flutter-examples/tree/main/dart

4. Flutter - Dart
• Classes and objects:

Mobile Applications - 9. Introduction to cross-platform apps development 32

// Class with constructor
class Person {
String? name;
int age;

// Constructor (short syntax)
Person(this.name, this.age);

// Named constructor (multiple constructor with
// descriptive name for different initialization scenarios)
Person.guest() : name = "Guest", age = 0;

// Method
void introduce() {
print("I'm $name, $age years old");

}
}

void main() {
var alice = Person("Alice", 25);
alice.introduce();

var guest = Person.guest();
guest.introduce();

}

> dart oop.dart
I'm Alice, 25 years old
I'm Guest, 0 years old

https://github.com/bonigarcia/flutter-examples/tree/main/dart

4. Flutter - Dart
• Mixins:

Mobile Applications - 9. Introduction to cross-platform apps development 33

// Mixins are a way of defining code that can
// be reused in multiple class hierarchies
mixin Swimming {
void swim() => print("Swimming!");

}

mixin Flying {
void fly() => print("Flying!");

}

// Apply mixins to a class
class Duck with Swimming, Flying {
void quack() => print("Quack!");

}

void main() {
var duck = Duck();
duck.swim(); // Output: "Swimming!"
duck.fly(); // Output: "Flying!"
duck.quack(); // Output: "Quack!"

}

> dart mixins.dart
Swimming!
Flying!
Quack!

https://github.com/bonigarcia/flutter-examples/tree/main/dart

4. Flutter - Dart
• Async programming:

Mobile Applications - 9. Introduction to cross-platform apps development 34

// Future represents a value (String) that will be available later
// async: Marks a function as asynchronous
Future<String> fetchUser() async {
// await: Pauses execution until the Future completes (without blocking other code)
await Future.delayed(Duration(seconds: 2)); // Simulate network request
return "Alice";

}

// Using async/await
void getUser() async {
String user = await fetchUser(); // Waits for fetchUser() to complete
print("User: $user"); // Prints after 2 seconds

}

void main() {
getUser(); // Starts the async operation
print("Loading..."); // Runs immediately (non-blocking)

}

> dart async.dart
Loading...
User: Alice

https://github.com/bonigarcia/flutter-examples/tree/main/dart

4. Flutter - Dart
• Error handling:

Mobile Applications - 9. Introduction to cross-platform apps development 35

void main() {
try {
// The operator ~/ divides two numbers and
// returns the result as an integer while the
// operator / returns the result as a double
var result = 100 ~/ 0;
print(result);

} catch (e) {
print("Error: $e");

} finally {
print("Done");

}
}

> dart error_handling.dart
Error: IntegerDivisionByZeroException
Done

https://github.com/bonigarcia/flutter-examples/tree/main/dart

4. Flutter - Widgets
• Flutter provides a rich set of core widgets to build responsive Uis, such as:

• Basic (UI structure and layout)
− Text, Container, Row & Column, Stack, Padding, Center, SizedBox, Expanded & Flexible

• Interactive
− Buttons, TextField, Checkbox, Radio, Switch, Slider, GestureDetector, InkWell, ...

• Platform-specific
− Material (Android): MaterialApp, Scaffold, AppBar, FloatingActionButton, Card, …
− Cupertino (iOS): CupertinoApp, CupertinoNavigationBar, CupertinoButton, CupertinoPicker, ...

• Navigation and routing
− Navigator, PageRoute, BottomNavigationBar, TabBar & TabBarView, ...

• State management
− StatefulWidget, InheritedWidget, Provider, ValueNotifier, ChangeNotifier

• List and grids
− ListView, GridView, ListTile, ListView.builder, …

Mobile Applications - 9. Introduction to cross-platform apps development 36

https://docs.flutter.dev/ui/widgets

https://docs.flutter.dev/ui/widgets

4. Flutter - Hello World
• To implement a “Hello World” app in Flutter, we can do the following:

1. Create a new Flutter project

2. We can check and edit our app (using Dart)

3. Run the app

Mobile Applications - 9. Introduction to cross-platform apps development 37

> flutter create hello_world

> cd hello_world

> flutter run

The official doc recommend
to use Visual Studio Code for
coding (although other IDEs

can be used)

https://code.visualstudio.com/

https://code.visualstudio.com/

4. Flutter - Hello World

Mobile Applications - 9. Introduction to cross-platform apps development 38

import 'package:flutter/material.dart';

void main() {
runApp(const MyApp());

}

class MyApp extends StatelessWidget {
const MyApp({super.key});

// This widget is the root of your application.
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
colorScheme: ColorScheme.fromSeed(seedColor: Colors.deepPurple),
useMaterial3: true,

),
home: const MyHomePage(title: 'Flutter Demo Home Page'),

);
}

}

class MyHomePage extends StatefulWidget {
const MyHomePage({super.key, required this.title});

final String title;

@override
State<MyHomePage> createState() => _MyHomePageState();

}

class _MyHomePageState extends State<MyHomePage> {
int _counter = 0;

void _incrementCounter() {
setState(() {
_counter++;

});
}

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
backgroundColor: Theme.of(context).colorScheme.inversePrimary,
title: Text(widget.title),

),
body: Center(
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
const Text(
'You have pushed the button this many times:',

),
Text(
'$_counter',
style: Theme.of(context).textTheme.headlineMedium,

),
],

),
),
floatingActionButton: FloatingActionButton(
onPressed: _incrementCounter,
tooltip: 'Increment',
child: const Icon(Icons.add),

),
);

}
}

4. Flutter - Hello World

Mobile Applications - 9. Introduction to cross-platform apps development 39

> flutter run
Connected devices:
Windows (desktop) • windows • windows-x64 • Microsoft Windows [Version 10.0.19044.3086]
Chrome (web) • chrome • web-javascript • Google Chrome 123.0.6312.86
Edge (web) • edge • web-javascript • Microsoft Edge 123.0.2420.53
[1]: Windows (windows)
[2]: Chrome (chrome)
[3]: Edge (edge)
Please choose one (or "q" to quit): 2
Launching lib\main.dart on Chrome in debug mode...
Waiting for connection from debug service on Chrome... 13.5s
This app is linked to the debug service: ws://127.0.0.1:63553/Q8vuDIwFoCo=/ws
Debug service listening on ws://127.0.0.1:63553/Q8vuDIwFoCo=/ws

To hot restart changes while running, press "r" or "R".
For a more detailed help message, press "h". To quit, press "q".

A Dart VM Service on Chrome is available at: http://127.0.0.1:63553/Q8vuDIwFoCo=
The Flutter DevTools debugger and profiler on Chrome is available at:
http://127.0.0.1:9100?uri=http://127.0.0.1:63553/Q8vuDIwFoCo=

The same codebase can
be deployed as a desktop

or web app

4. Flutter - Hello World

Mobile Applications - 9. Introduction to cross-platform apps development 40

If we have a running AVD, the
same app will be deployed as

an Android APK

> flutter run
Launching lib\main.dart on Android SDK built for x86 in debug mode...
Running Gradle task 'assembleDebug'... 2,477ms
√ Built build\app\outputs\flutter-apk\app-debug.apk.
Installing build\app\outputs\flutter-apk\app-debug.apk... 915ms
Syncing files to device Android SDK built for x86... 48ms

Flutter run key commands.
r Hot reload.
R Hot restart.
h List all available interactive commands.
d Detach (terminate "flutter run" but leave application running).
c Clear the screen
q Quit (terminate the application on the device).

A Dart VM Service on Android SDK built for x86 is available at:
http://127.0.0.1:64007/fgVC3u2TxHg=/
The Flutter DevTools debugger and profiler on Android SDK built for x86 is available at:
http://127.0.0.1:9100?uri=http://127.0.0.1:64007/fgVC3u2TxHg=/
D/eglCodecCommon(6814): setVertexArrayObject: set vao to 0 (0) 1 0
D/EGL_emulation(6814): eglMakeCurrent: 0xe064b780: ver 2 0 (tinfo 0xc76ef3c0)
D/eglCodecCommon(6814): setVertexArrayObject: set vao to 0 (0) 1 0

4. Flutter - Examples
• There are plenty of sample apps

maintained by the Flutter team:

Mobile Applications - 9. Introduction to cross-platform apps development 41

https://github.com/flutter/samples

For example, this app
contains a comprehensive set

of Material 3 components

https://github.com/bonigarcia/flutter-examples/tree/main/material
https://github.com/flutter/samples

Table of contents
1. Introduction

2. React

3. React Native

4. Flutter

5. Takeaways

Mobile Applications - 9. Introduction to cross-platform apps development 42

5. Takeaways
• React Native is an open source cross-platform framework for building

mobile apps (Android, iOS) from a single codebase
− React Native is based in React, and therefore, it allows to create interactive

UIs based on JavaScript (or TypeScript) components

− To ease the testing in real devices, we can use Expo Go to execute the app we
are developing

• Flutter is an open source cross-platform framework created by Google
that allows to develop applications for mobile (Android, iOS), web,
and desktop from a single codebase

− Flutter applications are written in Dart language

− Dart is programming language developed by Google aimed to help developers
build UIs effectively

Mobile Applications - 9. Introduction to cross-platform apps development 43

