Mobile Applications

9. Introduction to cross-platform apps
development

Boni Garcia

boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

vcodm | Universidad Carlos lll de Madrid
QIOE0)

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Mobile Applications - 9. Introduction to cross-platform apps development

Table of contents

1. Introduction
React

React Native
Flutter
Takeaways

LB W N

Mobile Applications - 9. Introduction to cross-platform apps development

1. Introduction

* As we have learned, there are different ways for developing mobile apps:

1. Native development involves creating apps specifically for a given platform
(Android or iOS) using platform-specific programming languages and tools

2. Hybrid development combines web technologies (HTML, CSS, JavaScript)
with a WebView native container to create apps that work across multiple

platforms

3. Cross-platform development uses frameworks that allow developers to
write code once and deploy it on multiple platforms
— Unlike hybrid apps, cross-platform apps are compiled into native code

4. Progressive Web Apps (PWAs) are websites that behave like apps

— They run in a browser but can be installed on a device and used offline

5. Low-Code/No-Code Platforms that allow non-developers to create apps
using drag-and-drop interfaces and pre-built templates

Mobile Applications - 9. Introduction to cross-platform apps development

1. Introduction
(Apptype |Pros | Coms

s

Native + High performance and responsiveness - Requires separate codebases for each
+ Best user experience and design platform (more development time and cost) .
consistency
Hybrid + Easy for developers familiar with web - Slower performance compared to native apps .
development - Limited access to advanced device features g CORDOVA' @ lonic
+ Single codebase for multiple platforms
Cross- + Saves development time and cost with a - Performance may not match fully native apps
platform single codebase - Limited access to certain platform-specific X3
+ Good performance for most apps features (depending on the framework) Qeact Native Xamarin
PWAs + No app store submission required - Limited access to device hardware and native
+ Can work on any device with a browser features v g @
+ Cost-effective and fast to develop - Can't match the performance of native apps
Low-Code/ + Speec‘:ls up development for smple apps - Limited flexibility and scalability for complex O outsystems \dalo
No-Code + Requires little to no programming apps
: : Microsof
knowledge This unit we study the PowerADpS (

basics of React Native
and Flutter

Mobile Applications - 9. Introduction to cross-platform apps development

Table of contents

2. React
Sandbox
Local setup
Frameworks
TypeScript

Mobile Applications - 9. Introduction to cross-platform apps development

2. React

* React is an open source front-end JavaScript library for building user
interfaces (Uls) based on components created by Meta (formerly
Facebook)

- It is typically used to build Single-Page Application (SPA)

— SPAs are web applications that interacts with the user by dynamically
rewriting the current web page with new data from the web server

* Some popular SPAs are the web versions of Instagram, Facebook, Netflix, or Airbnb

b

React

The library for web and native user interfaces

https://react.dev/

https://react.dev/

Mobile Applications - 9. Introduction to cross-platform apps development

2. React

* The key features of React are the following:

- Component-based
* React apps are built using reusable components (like Lego blocks)
* Each component manages its own state and logic

— JSX (JavaScript XML)

* JSX allows us to write HTML elements in JavaScript and place them in the DOM
(Document Object Model)

* It is not mandatory, but recommended for easier development
— Virtual DOM (lightweight, in-memory representation of the real DOM)

e React uses a Virtual DOM to optimize updates, making rendering faster

* Instead of updating the real DOM directly, React compares changes in memory first
— Rich ecosystem

* Works well with libraries and frameworks like Redux (state management), React Router
(navigation), or Next.js (server-side rendering)

https://redux.js.org/
https://reactrouter.com/
https://nextjs.org/

Mobile Applications - 9. Introduction to cross-platform apps development

2. React

* There are different ways to create React apps:

1. Using a sandbox
— A sandbox refers is an isolated, browser-based environment where we can
write, run, and test React code without setting up a local project
* It is a convenient way to quickly prototype without setting anything up locally
* A popular sandbox is CodeSandbox

2. Setting up a local project

— Using a build tool (convenient for basic projects)
* The classical tool is called Create React App, but it is deprecated nowadays
* Modern options are: Vite, Parcel, or Rsbuild
- Using a framework (convenient for complex projects)
* Provide enhanced features (e.g., SEQ, routing, optimizations, and others)
* For example: Next.js, Remix, Gatsby, or Expo

https://codesandbox.io/
https://create-react-app.dev/
https://vite.dev/
https://parceljs.org/
https://rsbuild.dev/
https://nextjs.org/
https://remix.run/
https://www.gatsbyjs.com/
https://expo.dev/

Mobile Applications - 9. Introduction to cross-platform apps development

2. React - Sandbox

* There are basic sandboxes examples in the React doc using JSX, e.g.:

function ({ name }) {

return <hl>Hello, {name}</h1>;

}

let App = function App() {
return <Greeting name="world" />

v a localhost:8080/sandbax html X +
€« &) ® localhost:8080/sandbox.html
Hello, world

¥

[«

A

function MyButton() { React components are JavaScript

return)
<butt(()n> functions that return markup
I'm a button (Greeting and MyButton in
</button> these examples)
)5
}
1et App — _Function MyApp() { hd o lacalhost8080/ sandbax.hitml X e =]
return (o c @ localhost:3080/sandbox.html ¥t 3} 3, ;
<div>
<h1>Welcome to my app</hl> Welcome to my app
<MyButton /> [m a button |
</div>
)5
}

https://react.dev/learn

https://react.dev/learn

Mobile Applications - 9. Introduction to cross-platform apps development

2. React - Local setup

* To set up a local React project, the requirements are:
1. Node.js

- Node.js is an open source, cross-platform JavaScript runtime environment
that enables the execution of JavaScript code outside a web browser

- Node.js comes with NPM, its default package manager

n / d c ﬁ) > hode verster After install Node.js, we

can execute node and npm

> npm --version

https://nodejs.org/ 10.6.0 as command-line tools
2. Code editor (not mandatory, but highly recommended) ‘
— One of the most popular IDEs for React is Visual Studio Code &
— Other alternatives are: WebStorm, Sublime Text, or Atom Visual Studio Code

https://code.visualstudio.com/

https://nodejs.org/
https://code.visualstudio.com/

Mobile Applications - 9. Introduction to cross-platform apps development

2. React - Local setup

* For instance, we can use Vite to set up a local React project:

> npm create vite@latest hello-world-vite -- --template react

> c¢d hello-world-vite

v W Vite + React x 4 - o0 x
| G @ localhost5173 * O & ;@5

1/ https://vite.dev/

> npm install

> npm run dev

Vite + React

count is 0

Edit src/app. jsx and save to test HMR

https://react.dev/learn/build-a-react-app-from-scratch

https://vite.dev/
https://react.dev/learn/build-a-react-app-from-scratch

Mobile Applications - 9. Introduction to cross-platform apps development

2. React - Frameworks

e React frameworks support all the features required to deploy and
scale an app in production

- For example, Next.js:

v @ Create Next App x ar

c @ localhost:3000
npx create-next-app@latest ocalhos

What is your project named? » my-app

Would you like to use ? » No /

Would you like to use 2 » / Yes

Would you like to use ? » No /

Would you like your code inside a ? % / Yes I\EXT.JS
Would you like to use ? (recommended) » No /

1. Get started by editing app/page.tsx .

Would you like to use for "next dev'? » No /
Would you like to customize the (C@/* by default)? » / Yes

2. Save and see your changes instantly.

Creating a new Next.js app in C:\Users\boni\dev\react\my-app. Alead our docs

> c¢d my-app

B Learn [Examples & Go to nextjs.org —

> npm run dev o

npx is a CLI tool that comes with npm used kE X TJS

to.execu.te Node.js packages without https://nextis.org/
installing them globally or locally

https://nextjs.org/

Mobile Applications - 9. Introduction to cross-platform apps development

2. React - TypeScript

* JavaScript (JS) is a high-level, often just-in-time compiled programming
language JS
— JavaScript was first released on Netscape 2 (a web browser) in 1996

- It is most well-known as the scripting language for web pages, being one of the core
technologies of the Web, alongside HTML and CSS
- It has dynamic typing, i.e., type of a variable is known at runtime. Type checking occurs

also at runtime

* TypeScript (TS) is an open source programming language developed by

Microsoft, first released in 2012
— TypeScript is often referred to as a superset or extension of JavaScript
— TypeScript extends JavaScript by adding static typing, i.e., the type of a variable is
known at compile-time. This feature help developers build large-scale, robust
applications more effectively
— Unlike JavaScript, TypeScript can’t be executed directly in a browser — it must be
transpiled into JavaScript first

Mobile Applications - 9. Introduction to cross-platform apps development

2. React - TypeScript

* The following table summarizes the advantages and disadvantages of
using JavaScript and TypeScript in React development:

Pros <+ Faster development time: JavaScript is a * Code quality: TypeScript adds static typing to
dynamic and flexible language that allows JavaScript, which helps catch bugs at compile-time
developers to build applications quickly e Developer experience: Features such as auto-

e Easier to learn: Shallow learning curve completion and error checking

Cons ¢ No static typing: JavaScript is a dynamically e Steep learning curve: TypeScript is more difficult to

typed, which can lead to bugs at runtime learn than JavaScript
* Code become complex: Without the benefit of * Longer development time: TypeScript’s additional
static typing, it can be challenging to maintain syntax and static typing can slow down

code quality and readability as applications grow development time, especially for small projects

Mobile Applications - 9. Introduction to cross-platform apps development

Table of contents

3. React Native
Expo

Hello World
Views

Core components

Mobile Applications - 9. Introduction to cross-platform apps development

3. React Native

* React Native is an open source cross-platform app framework for
building mobile apps (Android and iOS)

- Internally it uses the React library to manage the components. For that
reason, we can use JavaScript or TypeScript to develop React Native apps

- Like React, React Native is maintained by Meta (formerly Facebook) and a
community of individual developers and companies

&

React Native

https://reactnative.dev/

https://reactnative.dev/

Mobile Applications - 9. Introduction to cross-platform apps development

3. React Native - Expo

* The recommended way to set up a local React Native project is using a
Framework (i.e., a toolbox with all the necessary features to build
production ready apps) like Expo

* Expo is a framework and platform for building and deploying universal
React Native apps

* Expo Go is an open source mobile app for testing React Native apps on any
Android or iOS device

— It is available on both the Android Play Store and iOS App Store
* Android Play Store (Android Lollipop and greater)
e iOS App Store (iOS 13 and greater)

Q

/\ Expo

https://expo.dev/ https://expo.dev/client

https://play.google.com/store/apps/details?id=host.exp.exponent
https://apps.apple.com/app/expo-go/id982107779
https://expo.dev/client
https://expo.dev/

Mobile Applications - 9. Introduction to cross-platform apps development

3. React Native - Hello world

* We can create a basic React Native app with Expo using npx as
follows:

> npx create-expo-app hello-world

vV Downloaded and extracted project files.
vV Installed JavaScript dependencies.

Your project is ready!

To run your project, navigate to the directory and run one of the following npm

commands.

- cd hello-world

- npm run android

- npm run ios # you need to use macOS to build the iOS project - use the Expo app if
you need to do i0S development without a Mac

- npm run web

Mobile Applications - 9. Introduction to cross-platform apps development

3. React Native - Hello world

> npm run android

> hello-world@l1.0.0 android
> expo start --android

Starting project at C:\Users\boni\Documents\dev\react-native-examples\hello-world
Starting Metro Bundler
> Opening exp://10.118.107.205:8081 on Pixel_4_API 30

EE:I

G

To run our app locally,
we need a running AVD
(e.g., executed with
Android Studio)

,-
o
Ta
-

]
L
Lh

!
foaa)

E
33

=]
E

[

~

Metro waiting on exp://10.118.107.205:8081
Scan the QR code above with Expo Go (Android) or the Camera app (iOS)

~

Using Expo Go
Press s | switch to development build

Press | open Android
Press | open web

Press j | open debugger
Press | reload app
Press | toggle menu
shift+m | more tools
Press o | open project code in your editor

> Press ? | show all commands

Logs for your project will appear below. Press Ctrl+C to exit.
Android Bundled 834ms index.js (644 modules)

Mobile Applications - 9. Introduction to cross-platform apps development

3. React Native - Hello world

import { StatusBar } from 'expo-status-bar';
import { StyleSheet, Text, View } from 'react-native';

export default function App() {
return (
<View style={styles.container}>
<Text>Open up App.js to start working on your app!</Text>
<StatusBar style="auto" />
</View>
)
}

Open up App.js to start working on your app!

const styles = StyleSheet.create({
container: {
flex: 1,
backgroundColor: '#fff',
alignItems: ‘center’,
justifyContent: ‘center’,
}s
1)

https://github.com/bonigarcia/react-native-examples/tree/main/hello-world

Mobile Applications - 9. Introduction to cross-platform apps development

3. React Native - Views
* Aview is the basic building block of Ul both in Android and iOS

— A view is a rectangular portion of the screen which can be used to display text,
images, etc.

* With React Native, we invoke these views with JavaScript using React
components

* At runtime, React Native creates the corresponding Android and iOS views
for those components

Cat Cafe Menu

ViewGroup Cat Cafe Menu

ImageView TextView '.' - Maru

u Pouncival

UITmageView UITextView

UIView

https://reactnative.dev/docs/intro-react-native-components

https://reactnative.dev/docs/intro-react-native-components

Mobile Applications - 9. Introduction to cross-platform apps development

3. React Native - Core Components

* React Native comes with a set of essential, ready-to-use native
components to building ours app. These components are called React
Native’s Core Components

REACT NATIVE Ul

COMPONENT ANDROID VIEW [10S VIEW WEB ANALOG DESCRIPTION

A container that supports layout with
<View> <ViewGroup> <UIView> A non-scrolling <div> flexbox, style, some touch handling, and
accessibility controls

Displays, styles, and nests strings of text

<Text> <TextView> <UITextView> <p> and even handles touch events

<Image> <ImageView> <UIImageView> Displays different types of images

A generic scrolling container that can

<Scrollview> |<ScrollView> |<UIScrollView> |<div> . . :
contain multiple components and views

<TextInput> <EditText> <UITextField> |<input type="text"> |Allows the user to enter text

https://reactnative.dev/docs/intro-react-native-components

https://reactnative.dev/docs/intro-react-native-components

Mobile Applications - 9. Introduction to cross-platform apps development

3. React Native - Core Components

import React from 'react’;
import { StyleSheet, View, Text, Image, TextInput } from 'react-native’;

const App = () => {
return (
<View style={styles.container}>
<Text>Some text</Text>
<Image source={require('./assets/react.png')} style={{width: 200, height: 200}} />
<TextInput
style={{
width: 200,
height: 40,
borderColor: 'gray’,
borderWidth: 1,
3}
defaultValue="Type in me"
/>
</View>
)s
}s

Some text

Type in me

export default App;

const styles = StyleSheet.create({
container :{
justifyContent: 'center', //Centered horizontally
alignItems: ‘center', //Centered vertically
flex:1

})s

https://github.com/bonigarcia/react-native-examples

Mobile Applications - 9. Introduction to cross-platform apps development

Table of contents

4. Flutter
Setup

Dart
Widgets
Hello World
Examples

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter

* Flutter is an open source cross-platform framework created by
Google used to develop applications for mobile (Android, iOS), web,
and desktop from a single codebase

* Flutter applications are written in Dart language
— Dart programming language developed by Google since 2011
— Dart aims to help developers build Uls effectively
— Dart is open source, object-oriented, and statically typed

g Flutter M Dart

https://flutter.dev/ https://dart.dev/

https://flutter.dev/
https://dart.dev/

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Setup

* To install Flutter and Dart in our machine, we use the following
tutorial:

— https://docs.flutter.dev/get-started/install

* Once it is installed, we can execute the command-line tools flutter
and dart:

> flutter --version

Flutter 3.29.3 e channel stable ¢ https://github.com/flutter/flutter.git
Framework e revision eal21f8859 (2 weeks ago) e 2025-04-11 19:10:07 +0000
Engine e revision cf56914b32

Tools e Dart 3.7.2 e DevTools 2.42.3

> dart --version
Dart SDK version: 3.7.2 (stable) (Tue Mar 11 ©4:27:50 2025 -0700) on "windows_x64"

* We can use the following command to verify our installation:

> flutter doctor -v

https://docs.flutter.dev/get-started/install

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Dart

* The key features of Dart are the following:

— Compiled language

* Can be compiled to native machine code (for mobile/desktop apps) or JavaScript (for
web apps)

e Uses Just-In-Time (JIT) compilation during development for hot reload

* Uses Ahead-Of-Time (AOT) compilation for production for optimized performance
— Object-oriented and supports for functional programming

* Classes, inheritance, interfaces, mixins

» Supports lambdas (anonymous functions), higher-order functions, and collections (like
map, filter, reduce)

— Static typing (types are checked at compile time)
- Null safety (to prevent null reference exceptions)

— Asynchronous programming with async/await
* Built-in support for futures and streams for handling async operations

Mobile Applications - 9. Introduction to cross-platform apps development

L % N
4. Flutter - D %,
. Flutier ar %0, N
\\\6 \\
o F{f?ll() \A/()|F|(j: void main() { > dart hello _world.dart \\\
print('Hello, Dart World!'); Hello, Dart World! A

}

 Variables and data types:

void main() { > dart variables_data_types.dart
// Variables (type inference with 'var') Alice is 25 years old

var name = "Alice"; // String

int age = 25; // Explicit type
double height = 5.9;
bool isStudent = true;

// Dynamic type (can change at runtime)
dynamic dynamicVar = "Hello";
dynamicVar = 42; // Now an int

// Constants (compile-time)

const PI = 3.14;

final currentTime = DateTime.now(); // Runtime constant

print("$name is $age years old"); // String interpolation

https://dart.dev/language

https://github.com/bonigarcia/flutter-examples/tree/main/dart
https://dart.dev/language

Mobile Applications - 9. Introduction to cross-platform apps development

void main() { \\fo:.f \\
4. Flutter- Dart >
- \\ 0, \\\
* // If-else \\\C}(.‘ \\
if (score >= 90) { \\%6 "N
print("A"); \\\ D
* Control flow and loops: } else if (score >= 80) {
print("B"); // Output: B A
} else { N
print("C");
}

// For loop

for (var 1 = 9; 1 < 3; i++) {
print(i); // o, 1, 2

}

// While loop

int count = 0;

while (count < 2) {
print("Count: $count"); // Count: @, Count: 1
count++;

}

// Switch-case
String grade = "B";
switch (grade) {
case "A":
print("Excellent!");
break;
case "B":
print("Good!"); // Output: Good!
break;
default:
print("Unknown");

https://github.com/bonigarcia/flutter-examples/tree/main/dart

Mobile Applications - 9. Introduction to cross-platform apps development

A
\O/;f R
_ \\\@0 \\\
. A % N
\\\06 \\\
: // Basic function > dart functions.dart .
° . |
Fu nCtlonS- void greet(String name) { Hello, Alice! \\
print("Hello, $name!™); Bob is 30 years old. N
} Hello, Alice

Hello, Dr. Alice
5

// Optional positional parameters

void sayHello(String name, [String? title]) {
print("Hello, ${title ?? "'} $name");

}

// Named parameters (with defaults)
void describe({String name = "User", int age = 0}) {
print("$name is $age years old");

}

// Main function
void main() {
greet("Alice"); // Hello, Alice!

describe(name: "Bob", age: 30); // Bob is 30 years old.

sayHello("Alice"); // Hello, Alice
sayHello("Alice", "Dr."); // Hello, Dr. Alice

// Arrow function (short syntax)
int add(int a, int b) => a + b;
print(add(2, 3)); // 5

https://github.com/bonigarcia/flutter-examples/tree/main/dart

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Dart

* Collections (list, sets, maps):

void main() { > dart collections.dart
// List (ordered, mutable) Banana
List<String> fruits = ["Apple", "Banana"]; true

fruits.add("Cherry"); 30
print(fruits[1]); // Banana

// Set (unique items)
Set<int> numbers = {1, 2, 2, 3}; // {1, 2, 3}
print(numbers.contains(2)); // true

// Map (key-value pairs)
Map<String, int> ages = {
"Alice": 25,
"Bob": 30,
s
print(ages["Bob"]); // 30

https://github.com/bonigarcia/flutter-examples/tree/main/dart

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Dart

* Classes and objects:

// Class with constructor > dart oop.dart

class Person {
String? name;
int age;

I'm Alice, 25 years old
I'm Guest, O years old

// Constructor (short syntax)
Person(this.name, this.age);

// Named constructor (multiple constructor with
// descriptive name for different initialization scenarios)
Person.guest() : name = "Guest", age = 0;

// Method
void introduce() {
print("I'm $name, $age years old");
}
}

void main() {
var alice = Person("Alice", 25);
alice.introduce();

var guest = Person.guest();
guest.introduce();

}

https://github.com/bonigarcia/flutter-examples/tree/main/dart

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Dart \ o,
° S 0, R\
\\ c. \\
\\\ /(& \\\
\\\ 06 \\\
* Mixins:
// Mixins are a way of defining code that can > dart mixins.dart N
// be reused in multiple class hierarchies Swimming!
mixin Swimming { Flying!

void swim() => print("Swimming!"); Quack!

}

mixin Flying {
void fly() => print("Flying!");
}

// Apply mixins to a class

class Duck with Swimming, Flying {
void quack() => print("Quack!");

}

void main() {
var duck = Duck();
duck.swim(); // Output: "Swimming!"
duck.fly(); // Output: "Flying!"
duck.quack(); // Output: "Quack!"

}

https://github.com/bonigarcia/flutter-examples/tree/main/dart

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Dart

* Async programming:

// Future represents a value (String) that will be available later > dart async.dart
// async: Marks a function as asynchronous Loading...
Future<String> fetchUser() async {

// await: Pauses execution until the Future completes (without blocking other code)

await Future.delayed(Duration(seconds: 2)); // Simulate network request

return "Alice";

User: Alice

}

// Using async/await

void getUser() async {
String user = await fetchUser(); // Waits for fetchUser() to complete
print("User: $user"); // Prints after 2 seconds

}

void main() {
getUser(); // Starts the async operation
print("Loading..."); // Runs immediately (non-blocking)
}

https://github.com/bonigarcia/flutter-examples/tree/main/dart

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Dart
* Error handling:

void main() { > dart error_handling.dart

try { Error: IntegerDivisionByZeroException
// The operator ~/ divides two numbers and Done

// returns the result as an integer while the
// operator / returns the result as a double
var result = 100 ~/ 0;
print(result);

} catch (e) {
print("Error: $e");

} finally {
print("Done");

}

}

https://github.com/bonigarcia/flutter-examples/tree/main/dart

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Widgets

 Flutter provides a rich set of core widgets to build responsive Uis, such as:

Basic (Ul structure and layout)
— Text, Container, Row & Column, Stack, Padding, Center, SizedBox, Expanded & Flexible

Interactive
— Buttons, TextField, Checkbox, Radio, Switch, Slider, GestureDetector, InkWell, ...

Platform-specific
- Material (Android): MaterialApp, Scaffold, AppBar, FloatingActionButton, Card, ...
— Cupertino (iOS): CupertinoApp, CupertinoNavigationBar, CupertinoButton, CupertinoPicker, ...

Navigation and routing
— Navigator, PageRoute, BottomNavigationBar, TabBar & TabBarView, ...

State management
— StatefulWidget, InheritedWidget, Provider, ValueNotifier, ChangeNotifier

List and grids
— ListView, GridView, ListTile, ListView.builder, ...

https://docs.flutter.dev/ui/widgets

https://docs.flutter.dev/ui/widgets

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Hello World

* To implement a “Hello World” app in Flutter, we can do the following:
1. Create a new Flutter project

> flutter create hello world

The official doc recommend
to use Visual Studio Code for

]] coding (although other IDEs
2. We can check and edit our app (using Dart) o b e

‘

Visual Studio Code

> cd hello world https://code.visualstudio.com/
> flutter run

3. Runthe app

https://code.visualstudio.com/

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Hello World

import ‘'package:flutter/material.dart’;

void main() {

runApp(const MyApp());

class MyApp extends StatelessWidget {

const MyApp({super.key});

// This widget is the root of your application.
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
colorScheme: ColorScheme.fromSeed(seedColor: Colors.deepPurple),
useMaterial3: true,
)>
home: const MyHomePage(title: 'Flutter Demo Home Page'),
)s
}

class MyHomePage extends StatefulWidget {

const MyHomePage({super.key, required this.title});
final String title;

@override
State<MyHomePage> createState() => _MyHomePageState();

class MyHomePageState extends State<MyHomePage> {
int _counter = 0;

void _incrementCounter() {
setState(() {
_counter++;

})s
}

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
backgroundColor: Theme.of(context).colorScheme.inversePrimary,
title: Text(widget.title),
)>
body: Center(
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
const Text(
'"You have pushed the button this many times:',
)>
Text(
'$ counter',
style: Theme.of(context).textTheme.headlineMedium,

)s
Is
)s
)s

floatingActionButton: FloatingActionButton(
onPressed: _incrementCounter,
tooltip: 'Increment',
child: const Icon(Icons.add),

)>
)5
}

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Hello World

o < Flutter Demo % + — | b
> flutter run ¢ C @ localhost63530 W o =
Connected devices:

Windows (desktop) e windows e windows-x64 e Microsoft Windows [Version 10.0.19044.3086] Flutter Demo Home Page
Chrome (web) e chrome e« web-javascript e Google Chrome 123.0.6312.86
Edge (web) e edge e web-javascript e Microsoft Edge 123.0.2420.53
[1]: Windows (windows)
[2]: Chrome (chrome)
[3]: Edge (edge)
Please choose one (or "q" to quit): 2
Launching lib\main.dart on Chrome in debug mode...
Waiting for connection from debug service on Chrome... 13.5s
This app is linked to the debug service: ws://127.0.0.1:63553/Q8vuDIwFoCo=/ws
Debug service listening on ws://127.0.0.1:63553/Q8vuDIwFoCo=/ws
You have pushed the button this many times:

For a more detailed help message, press "h". To quit, press "q". ?
A Dart VM Service on Chrome is available at: http://127.0.0.1:63553/Q8vuDIwFoCo=
The Flutter DevTools debugger and profiler on Chrome is available at:
http://127.0.0.1:9100?uri=http://127.0.0.1:63553/Q8vuDIwFoCo=

The same codebase can

be deployed as a desktop o

or web app

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Hello World

> flutter run

Launching lib\main.dart on Android SDK built for x86 in debug mode...
Running Gradle task 'assembleDebug'... 2,477ms
v Built build\app\outputs\flutter-apk\app-debug.apk.

Installing build\app\outputs\flutter-apk\app-debug.apk... 915ms
Syncing files to device Android SDK built for x86... 48ms

Flutter run key commands.
Hot reload.
Hot restart.
List all available interactive commands.

Detach (terminate "flutter run" but leave application running).
Clear the screen
Quit (terminate the application on the device).

A Dart VM Service on Android SDK built for x86 is available at:
http://127.0.0.1:64007/fgVC3u2TxHg=/

The Flutter DevTools debugger and profiler on Android SDK built for x86 is available at:
http://127.0.0.1:9100?uri=http://127.0.0.1:64007/fgVC3u2TxHg=/

D/eglCodecCommon(6814): setVertexArrayObject: set vao to © (©) 1 ©

D/EGL_emulation(6814): eglMakeCurrent: 0xe064b780: ver 2 O (tinfo Oxc76ef3cO)
D/eglCodecCommon(6814): setVertexArrayObject: set vao to © (©) 1 ©

If we have a running AVD, the
same app will be deployed as
an Android APK

1243 © @

Flutter Demo Home Page

You have pushed the button this many times:

0

Mobile Applications - 9. Introduction to cross-platform apps development

4. Flutter - Examples 4
| 27 %+ 1) \\‘?%\\\
* There are plenty of sample apps | N

Material 3 G B & &

maintained by the Flutter team:

Actions

Common buttons ®

https://github.com/flutter/samples

Elevated + lcon

Filled tonal + lcon

For example, this app
. . | r'/‘- : -\w / -7.‘.
contains a comprehensive set (__owmed) ((+ reon)
of Material 3 components . S e

Floating action buttons ©®

0o

Components Color Typography Elevation

https://github.com/bonigarcia/flutter-examples/tree/main/material
https://github.com/flutter/samples

Mobile Applications - 9. Introduction to cross-platform apps development

Table of contents

5. Takeaways

Mobile Applications - 9. Introduction to cross-platform apps development

5. Takeaways

* React Native is an open source cross-platform framework for building
mobile apps (Android, iOS) from a single codebase

— React Native is based in React, and therefore, it allows to create interactive
Uls based on JavaScript (or TypeScript) components

— To ease the testing in real devices, we can use Expo Go to execute the app we
are developing

 Flutter is an open source cross-platform framework created by Google
that allows to develop applications for mobile (Android, i0S), web,
and desktop from a single codebase
— Flutter applications are written in Dart language

— Dart is programming language developed by Google aimed to help developers
build Uls effectively

