Mobile Applications

8. Automated tests in Android

Boni Garcia

boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

vcodm | Universidad Carlos lll de Madrid
QIOE0)

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Mobile Applications - 8. Automated tests in Android

Table of contents

Introduction

Software testing

Test automation tools
Automated tests in Android
Continuous integration

o Uk W

Takeaways

Mobile Applications - 8. Automated tests in Android

1. Introduction

* In this course, we have studied the basics of Android development

* To verify that the app being developed work as expected, we deploy
the app in an Android Virtual Device (AVD) or a physical device and

interact with the app manually

* This is a type of manual testing, and it is done always by developers as
part of its daily job

* In addition to manual testing, in real software development, it is very
important to carry out automated testing as well

Mobile Applications - 8. Automated tests in Android

Table of contents

2. Software testing
— Test automation
- Levels of testing
- Types of testing

Mobile Applications - 8. Automated tests in Android

2. Software testing

» Software testing (or simply testing) consists of the dynamic
evaluation of a piece of software, called System Under Test (SUT), to
ensure it is working as intended and meets user expectations

* We distinguish two big categories of software testing:

1. Manual testing, a person (typically a developer, tester, or even the
final user) evaluates the SUT

2. Automated testing, a software engineer (such as a developer or
tester) implements a piece of code (called test case or simply test)
and use specific software tools to control their execution against the

SUT

Mobile Applications - 8. Automated tests in Android

2. Software testing - Test automation

* The main benefits of test automation are the following:
— Early detection of software defects (usually called bugs) in the SUT
- Faster feedback: automated tests run faster than manual tests, enabling

quicker feedback on code changes (to avoid regressions)

* Aregression is a bug that appears in a previously working part of the software after
changes have been made

— Repeatability: automated tests allows us to create complex systems by
ensuring consistent test execution and results

— Scalability: automated tests can be scaled across multiple platforms
(browsers, devices, operating systems, etc.)

— Efficiency: higher initial setup cost but reduces long-term expenses by
minimizing repetitive manual effort

Mobile Applications - 8. Automated tests in Android

2. Software testing - Test automation

Compared to manual testing, test automation
has a high initial investment but it allows to save
cumulative costs in the long-term

—

Manual testing

costs

Test automation

time

Mobile Applications - 8. Automated tests in Android

2. Software testing - Levels of testing

* Depending on the size of the SUT, we can define different levels of
testing

- These levels define several categories in which software teams divide their
testing efforts

End-to-end (E2E) testing in which the final user is
involved

Acceptance } User testing

Software system is tested as a whole (including (validation)

dependent subsystems)

or classes in object-oriented programming)

: : End-to-en
Software system is tested as a whole (excluding duoend
dependent subsystems
: ') & SiStam Development testin
Assessment of the interaction between the involved units — (F:,f, tion) &
to expose defects in their interfaces > Integration veriticatio
Assessment of individual units of software. A unit is a Unit
particular observable element of behavior (e.g., methods

2. Software testing - Levels of testing

Mobile Applications - 8. Automated tests in Android

Acceptance/end-to-end testing

-
- —
I -

——

a"’ i
Ry Software system
,' \'\
ra Ay
.
.r" \ \ ™~
C
!
\ ’ =S
!
‘o\ / ’ \
A\ ’ l !
b - 4 5 /
\ \-.____.__ \-I‘_--.-_-’
~. ‘Integrationtesting Unit testing
~ - ‘ N -
~ . - -
v Y
- — |
— A External
Database software
S system(s)

= -
- =

Mobile Applications - 8. Automated tests in Android

2. Software testing - Types of testing

* Depending on the strategy for designing test cases, we can implement
different types of tests:

- Functional testing (also known as behavioral or closed-
box testlng}. Evaluates the compllqnce.of a piece of The difference between these
software with the expected behavior (i.e., its functional | testing types is that functional
requirements) tests are responsibility-based,

— Structural testing (also known as white-box testing). whitestructuralitests are
Determines if the program-code structure is faulty. To 'mplementation-based
that aim, testers should know the internal logic of a
piece of software

- Nonfunctional testing, includes testing strategies that assess the quality
attributes of a software system (i.e., its nonfunctional requirements)

* Such as performance, security, usability, or accessibility testing, among others

Mobile Applications - 8. Automated tests in Android

Table of contents

3. Test automation tools
— Unit tests
— E2E tests for mobile apps

Mobile Applications - 8. Automated tests in Android

3. Test automation tools

* Automated testing requires the use of some tooling to implement,
execute, and control the automated tests effectively

* One of the most relevant categories for testing tools is the unit
testing frameworks

* A unit testing framework allows developers to write and run
repeatable tests
— A library is a collection of code that developers can call using an API to solve a
given problem

- A framework is collection of libraries, tools, and best practices that provides a
structure for developing software

* Therefore, a framework is typically more complex and restricted than a library since it
defines a skeleton where the piece of software using it implements its logic

3. Test automation tools - Unit tests

* The following picture illustrates the typical steps of a unit test

The steps “setup”
and “teardown”
are optional

Mobile Applications - 8. Automated tests in Android

Test

initialize

Setup

Test verdict

& H—— Verify oassert

- _'__—‘_‘——_._‘
Exercise _ . ==

interact

| Teardown |

- finalize

System Under
Test (SUT)

Expected value

!

Comparator

T
Real outcome
(from SUT)

assertion

s
- -

Mobile Applications - 8. Automated tests in Android

3. Test automation tools - Unit tests

* In Java, some of the most relevant unit testing frameworks are:

— JUnit (version 4 or 5)
- TestNG

JUnit JUNIt@E TestN

https://junit.org/junit4/ https://junit.org/junit5/ https://testng.org/

__d

Android Studio uses
JUnit 4 by default

https://junit.org/junit4/
https://junit.org/junit5/
https://testng.org/

Mobile Applications - 8. Automated tests in Android

3. Test automation tools - E2E tests for mobile apps

* Automated testing is an essential process in the development of
production-ready apps

* We need specific tooling to test automatically mobile apps from its Ul

In this course, we focus in
the specific testing libraries
for Jetpack Compose apps

P appium ~

https://appium.io/
espresso 0

https://developer.android.com/training /testing/espresso https://developer.android.com/develop/ui/compose/testing

https://developer.android.com/training/testing/espresso
https://appium.io/
https://developer.android.com/develop/ui/compose/testing

Mobile Applications - 8. Automated tests in Android

4. Automated tests in Android - Compose testing

 Compose provides a set of testing APIs to find Testing cheat sheet e
. o . Finders Assertions
elements, verify their attributes, and perform =) sm | 2

user actions

 The Compose testing cheat sheet provides a
quick reference of some of the most useful
Compose test APIs

https://developer.android.com/develop/ui/compose/testing/testing-cheatsheet

Matchers

useUnmergedTree: Boolean

assertIs[not|Displayed
assertIs|Not |Enabled
assertls(Not|Selected
assertls|Not|Focused
assertTsOn
assertIsOff
assertIsToggleable
assertIsSelectable
assertTextEquals
asser tains

has[No]ClickAction

hasContentDescription|Exact

HIERARCHICAL

assertValueEquals
assertRangeInfoEquals
essertHas| o ClickAction

hasParent
hasIneAction ¢
hasProgressBarRangeInfo :“:"Y‘s’;‘;ﬁ‘
has| 4o]Serollaction Heliis At
hasScrellTo| Index|Key|Node |Action hE!A"yAEE:E" lant
hasSetTextAction ashnyAncestor COLLECTIONS
hasStateDescription
hasTestTag sasertAll
Exac assertan
Dialog SELECTORS assertCountEquals(Int)
Enabled 1 ter(matoher)
Focused
filterToOne matcher
e 515"1““"" onAncestors
1shegding onchild BOUNDS
1s0n onChildit assert(Width|Height |TsEqualTe
isPopup onthildren assertIsEqualTo
isselectable onFirst assert #10t|Height | IsAtLeast
isToggleable onLest assertTouch|Width Height | TsEqualTo
isFocusable onParent assertTopPositionInRootIsEqualTo
isRoot onsibling assertLeftPositionInRootIsEqualTo
onSiblings getAlignnentLinePosition(Gasel ine)
getunclippedsoundsInRaot
performClick
perfornTouchInput
performultiModslInput :;:;Lc“ck ::‘:gm
perfornScrollTa
perfornSemanticshction :;:E_ﬁ“‘" ey nerTe
performkeyPress swipe movePointarBy
parformImeAction swip | Dow t|Right|Up]
perfornTextClearance [Down|Left | Rig
RerforTaxtingut swipeWithvelocity w

perfornTextReplacenent

Rule
testRule =
createCon

setContent { }
density
runOnIdle { }
runDnUiThread { }
waitForIdle()
waitUntil { }
awaitIdle()

[un]registerIdlingResource()

mainClock.autoAdvance
mainClock.currentTine

maintlock.advanceTineBy()

mainClock . advanceTineByFrame()
mainClock.advanceTinelntil { }

goo.gle/compose-testing

t:Rule
| testRule =

teAl

ComposeTestRule.* +

activity
sctivityRule

Debug

onNode(...).*

sRule<Activity>()

printToString()
printToLog()

captureToImage()

https://developer.android.com/develop/ui/compose/testing/testing-cheatsheet

Mobile Applications - 8. Automated tests in Android

Table of contents

4. Automated tests in Android
— Android tests
— Unit tests

Mobile Applications - 8. Automated tests in Android

4. Automated tests in Android

* Android Studio provides seamless integration with different tools to
carry out automated testing in a seamless manner
— Unit testing: JUnit
— E2E testing: Jetpack Compose testing libraries

* The required testing dependencies (included by default in any new
Android Studio project) are:

libs.version.toml

[versions]
junit = "4.13.2"
composeBom = "2025.04.00"

build.gradle.kts (app) [libraries]

testImplementation(libs.junit) junit = { group = "junit", name = "junit", version.ref = "junit" }
androidTestImplementation(platform(Llibs.androidx.compose.bom)) androidx-ui-test-manifest = { group = "androidx.compose.ui", name = "ui-test-manifest" }
androidTestImplementation(Llibs.androidx.ui.test.junit4) androidx-ui-test-junit4 = { group = "androidx.compose.ui", name = "ui-test-junit4" }

https://developer.android.com/studio/test
https://developer.android.com/training/testing
https://developer.android.com/develop/ui/compose/testing

https://developer.android.com/studio/test
https://developer.android.com/training/testing
https://developer.android.com/develop/ui/compose/testing

Mobile Applications - 8. Automated tests in Android

4. Automated tests in Android

* Android makes the following distinction between tests:

— Units tests (sometimes called local
tests): Small and fast, isolating the
subject under test from the rest of
the app

— Android tests: run on an Android
device, either physical or emulated.
There are two types:

* Ul tests (E2E tests): These tests launch
the app and then interacting with it
through its Ul

* Context tests (integration tests): This
type of tests uses the context object to
evaluate some behavior of the SUT

App logic (SUT) %*

N

Android tests

—

Unit tests

N\ 7

[d

Android

[- app

[J manifests
[kotlin+java
[£]J es.uc3m.android.test
5] dummyjson
[5J ui.theme
[c] viewmodel

[£ MainActivity.kt

[=] es.uc3m.android.test {andr

((: AddRecipeTest

((k FetchTodosTest

[=] es.uc3m.android.test (test

(& RestClientTest

(& ViewModelTest

Mobile Applications - 8. Automated tests in Android

4. Automated tests in Android - Android tests

* In the following examples, we use the demo app implementing a REST %
client as SUT:

My TODOs list

1. Do something nice for someone you care about
2. Memorize a poem
3. Watch a classic movie

Add ReCipe 4. Watch a documentary

Name 5. Invest in cryptocurrency

Get TODOs list 3
Ingredients
ca"cel m

6. Contribute code or a monetary donation to an

open-source software project

7. Solve a Rubik's cube

8. Bake pastries for yourself and neighbor

9. Go see a Broadway preduction

+

10. Write a thank you letter to an influential persomm

4 ® []

https://github.com/bonigarcia/android-examples/tree/main/TestAutomation

Mobile Applications - 8. Automated tests in Android

class AddRecipeTest { \\f? \\
private val context = InstrumentationRegistry.getInstrumentation().targetContext This test uses our SUT’s Ul in the \\\\
dget:Rule same way that a final user \
val composeTestRule = createAndroidComposeRule<MainActivity>() would (exercise) and the verifies
dTest < the Ul is as expected

fun addRecipeTest() {
// Exercise: click on +
val add = context.getString(R.string.add)
composeTestRule.onNodeWithContentDescription(add).performClLick()

// Exercise: add recipe

composeTestRule.onNode(hasText(context.getString(R.string.name)))
.performTextInput("My recipe")

composeTestRule.onNode(hasText(context.getString(R.string.ingredients)))
.performTextInput("My ingredients")

val accept = context.getString(R.string.accept)

composeTestRule.onNodeWithText(accept).performCLlick()

(% AddRecipeTest.kt

D\ rlace AddBorinaeTect {

> Run 'AddRecipeTest'

// Verify: we're back to home {¥ Debug 'AddRecipeTest" Jnstrumenta
composeTestRule.onNodeWithContentDescription(accept).assertIsNotDisplayed() | &) Profiler: Run "AddRecipeTest' as profileable (low overhead)
composeTestRule.onNodeWithContentDescription(add).assertIsDisplayed() | @ Profiler: Run 'AddRecipeTest' as debuggable (complete data) . ——
dlNACTIVITY>
} Modify Run Configuration...
@Test
} We can execute the test -

> fun addRecipeTest() {
in Android Studio using Exercise: click on +
. val add = context.getString(R.string.add)
this button composeTestRule.onNodeWithContentDescription(add).perfor

https://github.com/bonigarcia/android-examples/tree/main/TestAutomation

class FetchTodosTest {

private val context

@get:Rule
val composeTestRule

@Test
fun fetchTodosTest() {
// Exercise: click on get todos button

Mobile Applications - 8. Automated tests in Android

InstrumentationRegistry.getInstrumentation().targetContext

createAndroidComposeRule<MainActivity>()

composeTestRule.onNodeWithText(context.getString(R.string.get todos)).performCLick()

// Exercise: verify resulting todos Llist
composeTestRule.waitUntil(5000) {

composeTestRule.onNodeWithText(context.getString(R.string.my todos)).isDisplayed()

}

composeTestRule.onNodeWithTag("todos").onChildren() .fetchSemanticsNodes().isNotEmpty()

| _—

This test verifies other part of the
Ul, waiting until the results are
available in the screen as expected

N) —rre———
> Run 'FetchTodosTest'

It Debug 'FetchTodosTest' [nstrumentation

&) Profiler: Run 'FetchTodosTest' as profileable {low overhead)

(&) Profiler: Run 'FetchTodosTest' as debuggable (complete data)

inActivit

Modify Run Configuration... y>0
@Test

[> fun fetchTodosTest() {

composeTestRule.onNodeWithText(context.getString(R.string.ge

composeTestRule.waitUntil(5600) {
composeTestRule.onNodeWithText(context.getString(R.strin

https://github.com/bonigarcia/android-examples/tree/main/TestAutomation

Mobile Applications - 8. Automated tests in Android

4. Automated tests in Android - Unit tests

* Unit testing in Android apps can be challenging since we need to
isolated the unit under test

* A potential “unit” can be those classes used to implement REST clients

interface DummyJsonService {

The problem is that these
@GET("todos")

suspend fun getTodos(): Response<Todos> clients are Implemented with
coroutines
@POST("recipes/add")
suspend fun addRecipes(@Body recipe: Recipe): Response<Recipe>
}
build.gradle.kts (app)
testImplementation(libs.kotlinx.coroutines.test)
libs.version.toml . .
(versions] The solution is to use
kotlinxCoroutinesTest = "1.9.0"

an specific library for
[libraries]

kotlinx-coroutines-test = { module = "org.jetbrains.kotlinx:kotlinx-coroutines-test", version.ref = "kotlinxCoroutinesTest" } tEEStIr]E; C()F()thlr1EES

Mobile Applications - 8. Automated tests in Android

4. Automated tests in Android - Unittests <%

\\\ 06 \\\
class RestClientTest { @Test annotation marks this as a
@Test test function that will be executed by
fun dummyJsonTest() = runTest { . . .
// Exercise the testing framework (i.e., JUnit 4)
val response = DummyJsonClient.apiService.getTodos()
// Verify . runTest is a coroutine test runner
assertTrue(response.isSuccessful)
var todos = response.body()?.todos!! that handles asynchronous code
println(">>> todos: $todos") :
assertTrue(todos.isNotEmpty()) execution
}
}
i
| Run RestClientTest
B :)
' & 43 v @ =& 0
| > + Test Results 1sec161ms + Tests passed: 1

@ > 1asSK :app:processuepugJavares UP-I1U-UAIL
> Task :app:processDebugUnitTestJavaRes UP-TO-DATE
19 > Task :app:testDebugUnitTest

>

€

>>> todos: [Tedo(id=1, todo=Do something nice for someone you care about, completed=false,

frs]
| userId=152), Todo(id=2, todo=Memorize & poem, completed=true, userId=13), Todo(id=3, todo=Watch B
| a classic movie, completed=true, userId=68), Todo(id=4, todo=Watch a documentary, =y
B completed=false, userId=84), Todo(id=5, todo=Invest in cryptocurrency, completed=false,
99 userId=163), Todo(id=6, todo=Contribute code or a monetary donation to an open-source software @
i project, completed=false, userId=49), Todo(id=7, todo=Solve a Rubik's cube, completed=true,
0 TestAutomatior 0 app SI O tes ava es uc3m android test (f__& RestClientTest ™ & dummyJsonTest 29:37 CRLF UTF-8 £ 0O <+ 4 spaces o

https://github.com/bonigarcia/android-examples/tree/main/TestAutomation

Mobile Applications - 8. Automated tests in Android

4. Automated tests in Android - Unit tests

[} (([} ’, [} .
* Another potential “unit” can be those classes used to implement view
models
class RestViewModel : ViewModel() { . .
private val todos = MutableStateFlow<List<Todo>>(emptyList()) The prObIem IS that these VIEW mOdE|S
val todos: StateFlow<List<Todo>> get() = _todos uses a coroutine scope provided by
fun fetchTchzso { oumen « Android (viewModelScope). But we
viewModelScope. launc .
_islLoading.value = true want to execute a unit test, not and
try { i
val response = DummyJsonClient.apiService.getTodos() AndrOId test

if (response.isSuccessful) {
_todos.value = response.body()?.todos!!
}
} catch (e: Exception) {
_toastMessage.value = e.message
} finally {
_isloading.value = false

}

Mobile Applications - 8. Automated tests in Android

s O, N
° ° ° N ‘T
\\429 R
4. Automated tests in Android - Unit tests), N
\\\ /(& \\\
. . . \\\ 6 \\\
1 t:cl s o q \
e Viode rent ¢ ineshpiziclass) A solution is to use a coroutine test
private val testDispatcher = UnconfinedTestDispatcher() dispatcher (|e a thread to be USEd \\\
@Before instead the thread pool provided in

fun setup() {
Dispatchers.setMain(testDispatcher)

the coroutine Android scope)

}

Test . . 5 ang
guﬁsviewModelTest() = runTest { But in this case, in addition to the

val viewModel = RestViewModel()

VieuModel fotchTodes() test runner (r'w? Test), w.e need
some mechanism to wait the

val await = Awaitility.await().atMost(Duration.ofSeconds(5)) Al

await.until { viewModel.todos.value.isNotEmpty() } response, SUCh as Awaitilit

val todos = viewModel.todos.value _____121//////////,

println("*** todos: $todos")

} build.gradle.kts (app)

@After testImplementation(libs.awaitility)
fun tearDown() {

Dispatchers.resetMain()
} libs.version.toml

} [versions]
awaitility = "4.3.0"

[libraries]
waitility = { module = "org.awaitility:awaitility", version.ref = "awaitility" }

https://github.com/bonigarcia/android-examples/tree/main/TestAutomation
http://www.awaitility.org/

Mobile Applications - 8. Automated tests in Android

Table of contents

5. Continuous integration

— Build server
— GitHub Actions

Mobile Applications - 8. Automated tests in Android

5. Continuous integration

* Continuous Integration (Cl) is a software development strategy where
members of a software project build, test, and integrate their work
continuously in three separate stages:

Source code is typically
managed using a version

control system (like Git or
: CVS)

Source control

-
commit trigger
' A build server, also known as
a Cl server, is a dedicated
system that automates the

I . . .
7% ‘ — process of building, testing,
= \| and deploying software

report applications

Development Build server

Mobile Applications - 8. Automated tests in Android

5. Continuous integration - Build server

* A build server is server-side infrastructure that implement Cl pipelines
(sometimes called workflows)

— A Cl pipeline is a series of steps executed to build/test/deploy a given software

 Some popular build servers are:

GOO ‘v‘

(
GitHub Actions CI CD
https://docs.github.com/en/actions https://docs.gitlab.com/ee/ci/
o) Jenkins €, Bamboo

https://www.jenkins.io/ https://www.atlassian.com/software/bamboo

https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/
https://www.jenkins.io/
https://www.atlassian.com/software/bamboo

Mobile Applications - 8. Automated tests in Android

5. Continuous integration - GitHub Actions <&
* You can find a separate GitHub repository (different than the usual for
examples) with a complete example of app, tests, and Cl configuration

* Each time a new commit is done in the repo, the whole test suite
(local and instrumented) is executed in GitHub Actions

- When some test fails (regression), the development team is notified

»

https://github.com/bonigarcia/android-basic-app

https://github.com/bonigarcia/android-basic-app
https://github.com/bonigarcia/android-basic-app

Mobile Applications - 8. Automated tests in Android

Table of contents

6. Takeaways

Mobile Applications - 8. Automated tests in Android

6. Takeaways

e Software testing consists of the dynamic evaluation of a piece of
software (SUT), giving a verdict about it

* In automated testing, we use specific software tools to develop test
scripts and control their execution against the SUT

* Android Studio provides seamless integration with JUnit 4 and
Jetpack Compose for unit and Android tests

* Development teams usually a server-side infrastructure called a build
server (such as GitHub Actions) to implement Cl pipelines and
execute a suite of automated tests during the development lifecycle

