
Mobile Applications

8. Automated tests in Android

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction

2. Software testing

3. Test automation tools

4. Automated tests in Android

5. Continuous integration

6. Takeaways

Mobile Applications - 8. Automated tests in Android 2

1. Introduction
• In this course, we have studied the basics of Android development

• To verify that the app being developed work as expected, we deploy
the app in an Android Virtual Device (AVD) or a physical device and
interact with the app manually

• This is a type of manual testing, and it is done always by developers as
part of its daily job

• In addition to manual testing, in real software development, it is very
important to carry out automated testing as well

Mobile Applications - 8. Automated tests in Android 3

Table of contents
1. Introduction

2. Software testing
− Test automation

− Levels of testing

− Types of testing

3. Test automation tools

4. Automated tests in Android

5. Continuous integration

6. Takeaways

Mobile Applications - 8. Automated tests in Android 4

2. Software testing
• Software testing (or simply testing) consists of the dynamic

evaluation of a piece of software, called System Under Test (SUT), to
ensure it is working as intended and meets user expectations

• We distinguish two big categories of software testing:

1. Manual testing, a person (typically a developer, tester, or even the
final user) evaluates the SUT

2. Automated testing, a software engineer (such as a developer or
tester) implements a piece of code (called test case or simply test)
and use specific software tools to control their execution against the
SUT

Mobile Applications - 8. Automated tests in Android 5

2. Software testing - Test automation
• The main benefits of test automation are the following:

− Early detection of software defects (usually called bugs) in the SUT

− Faster feedback: automated tests run faster than manual tests, enabling
quicker feedback on code changes (to avoid regressions)
• A regression is a bug that appears in a previously working part of the software after

changes have been made

− Repeatability: automated tests allows us to create complex systems by
ensuring consistent test execution and results

− Scalability: automated tests can be scaled across multiple platforms
(browsers, devices, operating systems, etc.)

− Efficiency: higher initial setup cost but reduces long-term expenses by
minimizing repetitive manual effort

Mobile Applications - 8. Automated tests in Android 6

2. Software testing - Test automation

Mobile Applications - 8. Automated tests in Android 7

time

co
st

s

Test automation

Manual testing

Compared to manual testing, test automation
has a high initial investment but it allows to save

cumulative costs in the long-term

2. Software testing - Levels of testing
• Depending on the size of the SUT, we can define different levels of

testing
− These levels define several categories in which software teams divide their

testing efforts

Mobile Applications - 8. Automated tests in Android 8

Assessment of individual units of software. A unit is a
particular observable element of behavior (e.g., methods

or classes in object-oriented programming)

Assessment of the interaction between the involved units
to expose defects in their interfaces

Software system is tested as a whole (excluding
dependent subsystems)

End-to-end (E2E) testing in which the final user is
involved

Software system is tested as a whole (including
dependent subsystems)

2. Software testing - Levels of testing

Mobile Applications - 8. Automated tests in Android 9

2. Software testing - Types of testing
• Depending on the strategy for designing test cases, we can implement

different types of tests:

− Nonfunctional testing, includes testing strategies that assess the quality
attributes of a software system (i.e., its nonfunctional requirements)
• Such as performance, security, usability, or accessibility testing, among others

Mobile Applications - 8. Automated tests in Android 10

− Functional testing (also known as behavioral or closed-
box testing). Evaluates the compliance of a piece of
software with the expected behavior (i.e., its functional
requirements)

− Structural testing (also known as white-box testing).
Determines if the program-code structure is faulty. To
that aim, testers should know the internal logic of a
piece of software

The difference between these
testing types is that functional
tests are responsibility-based,

while structural tests are
implementation-based

Table of contents
1. Introduction

2. Software testing

3. Test automation tools
− Unit tests

− E2E tests for mobile apps

4. Automated tests in Android

5. Continuous integration

6. Takeaways

Mobile Applications - 8. Automated tests in Android 11

3. Test automation tools
• Automated testing requires the use of some tooling to implement,

execute, and control the automated tests effectively

• One of the most relevant categories for testing tools is the unit
testing frameworks

• A unit testing framework allows developers to write and run
repeatable tests

− A library is a collection of code that developers can call using an API to solve a
given problem

− A framework is collection of libraries, tools, and best practices that provides a
structure for developing software
• Therefore, a framework is typically more complex and restricted than a library since it

defines a skeleton where the piece of software using it implements its logic

Mobile Applications - 8. Automated tests in Android 12

3. Test automation tools - Unit tests
• The following picture illustrates the typical steps of a unit test

Mobile Applications - 8. Automated tests in Android 13

The steps “setup”
and “teardown”

are optional

3. Test automation tools - Unit tests
• In Java, some of the most relevant unit testing frameworks are:

− JUnit (version 4 or 5)

− TestNG

Mobile Applications - 8. Automated tests in Android 14

Android Studio uses
JUnit 4 by default

https://junit.org/junit4/ https://junit.org/junit5/ https://testng.org/

https://junit.org/junit4/
https://junit.org/junit5/
https://testng.org/

3. Test automation tools - E2E tests for mobile apps

• Automated testing is an essential process in the development of
production-ready apps

• We need specific tooling to test automatically mobile apps from its UI

Mobile Applications - 8. Automated tests in Android 15

https://developer.android.com/training/testing/espresso

https://appium.io/

https://developer.android.com/develop/ui/compose/testing

In this course, we focus in
the specific testing libraries
for Jetpack Compose apps

https://developer.android.com/training/testing/espresso
https://appium.io/
https://developer.android.com/develop/ui/compose/testing

4. Automated tests in Android - Compose testing

Mobile Applications - 8. Automated tests in Android 16

• Compose provides a set of testing APIs to find
elements, verify their attributes, and perform
user actions

• The Compose testing cheat sheet provides a
quick reference of some of the most useful
Compose test APIs

https://developer.android.com/develop/ui/compose/testing/testing-cheatsheet

https://developer.android.com/develop/ui/compose/testing/testing-cheatsheet

Table of contents
1. Introduction

2. Software testing

3. Test automation tools

4. Automated tests in Android
− Android tests

− Unit tests

5. Continuous integration

6. Takeaways

Mobile Applications - 8. Automated tests in Android 17

4. Automated tests in Android
• Android Studio provides seamless integration with different tools to

carry out automated testing in a seamless manner
− Unit testing: JUnit

− E2E testing: Jetpack Compose testing libraries

• The required testing dependencies (included by default in any new
Android Studio project) are:

Mobile Applications - 8. Automated tests in Android 18

https://developer.android.com/studio/test
https://developer.android.com/training/testing

https://developer.android.com/develop/ui/compose/testing

build.gradle.kts (app)

testImplementation(libs.junit)
androidTestImplementation(platform(libs.androidx.compose.bom))
androidTestImplementation(libs.androidx.ui.test.junit4)

[versions]
junit = "4.13.2"
composeBom = "2025.04.00"

[libraries]
junit = { group = "junit", name = "junit", version.ref = "junit" }
androidx-ui-test-manifest = { group = "androidx.compose.ui", name = "ui-test-manifest" }
androidx-ui-test-junit4 = { group = "androidx.compose.ui", name = "ui-test-junit4" }

libs.version.toml

https://developer.android.com/studio/test
https://developer.android.com/training/testing
https://developer.android.com/develop/ui/compose/testing

4. Automated tests in Android
• Android makes the following distinction between tests:

Mobile Applications - 8. Automated tests in Android 19

− Units tests (sometimes called local
tests): Small and fast, isolating the
subject under test from the rest of
the app

− Android tests: run on an Android
device, either physical or emulated.
There are two types:
• UI tests (E2E tests): These tests launch

the app and then interacting with it
through its UI

• Context tests (integration tests): This
type of tests uses the context object to
evaluate some behavior of the SUT

App logic (SUT)

Android tests

Unit tests

4. Automated tests in Android - Android tests
• In the following examples, we use the demo app implementing a REST

client as SUT:

Mobile Applications - 8. Automated tests in Android 20

https://github.com/bonigarcia/android-examples/tree/main/TestAutomation

4. Automated tests in Android - Android tests

Mobile Applications - 8. Automated tests in Android 21

class AddRecipeTest {

private val context = InstrumentationRegistry.getInstrumentation().targetContext

@get:Rule
val composeTestRule = createAndroidComposeRule<MainActivity>()

@Test
fun addRecipeTest() {

// Exercise: click on +
val add = context.getString(R.string.add)
composeTestRule.onNodeWithContentDescription(add).performClick()

// Exercise: add recipe
composeTestRule.onNode(hasText(context.getString(R.string.name)))

.performTextInput("My recipe")
composeTestRule.onNode(hasText(context.getString(R.string.ingredients)))

.performTextInput("My ingredients")
val accept = context.getString(R.string.accept)
composeTestRule.onNodeWithText(accept).performClick()

// Verify: we're back to home
composeTestRule.onNodeWithContentDescription(accept).assertIsNotDisplayed()
composeTestRule.onNodeWithContentDescription(add).assertIsDisplayed()

}

} We can execute the test
in Android Studio using

this button

This test uses our SUT’s UI in the
same way that a final user

would (exercise) and the verifies
the UI is as expected

https://github.com/bonigarcia/android-examples/tree/main/TestAutomation

4. Automated tests in Android - Android tests

Mobile Applications - 8. Automated tests in Android 22

class FetchTodosTest {

private val context = InstrumentationRegistry.getInstrumentation().targetContext

@get:Rule
val composeTestRule = createAndroidComposeRule<MainActivity>()

@Test
fun fetchTodosTest() {

// Exercise: click on get todos button
composeTestRule.onNodeWithText(context.getString(R.string.get_todos)).performClick()

// Exercise: verify resulting todos list
composeTestRule.waitUntil(5000) {

composeTestRule.onNodeWithText(context.getString(R.string.my_todos)).isDisplayed()
}
composeTestRule.onNodeWithTag("todos").onChildren().fetchSemanticsNodes().isNotEmpty()

}

}

This test verifies other part of the
UI, waiting until the results are

available in the screen as expected

https://github.com/bonigarcia/android-examples/tree/main/TestAutomation

interface DummyJsonService {

@GET("todos")
suspend fun getTodos(): Response<Todos>

@POST("recipes/add")
suspend fun addRecipes(@Body recipe: Recipe): Response<Recipe>

}

4. Automated tests in Android - Unit tests

Mobile Applications - 8. Automated tests in Android 23

• Unit testing in Android apps can be challenging since we need to
isolated the unit under test

• A potential “unit” can be those classes used to implement REST clients

The problem is that these
clients are implemented with

coroutines

testImplementation(libs.kotlinx.coroutines.test)

[versions]
kotlinxCoroutinesTest = "1.9.0"

[libraries]
kotlinx-coroutines-test = { module = "org.jetbrains.kotlinx:kotlinx-coroutines-test", version.ref = "kotlinxCoroutinesTest" }

build.gradle.kts (app)

libs.version.toml

The solution is to use
an specific library for

testing coroutines

4. Automated tests in Android - Unit tests

Mobile Applications - 8. Automated tests in Android 24

class RestClientTest {

@Test
fun dummyJsonTest() = runTest {

// Exercise
val response = DummyJsonClient.apiService.getTodos()

// Verify
assertTrue(response.isSuccessful)
var todos = response.body()?.todos!!
println(">>> todos: $todos")
assertTrue(todos.isNotEmpty())

}
}

@Test annotation marks this as a
test function that will be executed by
the testing framework (i.e., JUnit 4)

runTest is a coroutine test runner
that handles asynchronous code

execution

https://github.com/bonigarcia/android-examples/tree/main/TestAutomation

class RestViewModel : ViewModel() {
private val _todos = MutableStateFlow<List<Todo>>(emptyList())
val todos: StateFlow<List<Todo>> get() = _todos

fun fetchTodos() {
viewModelScope.launch {

_isLoading.value = true
try {

val response = DummyJsonClient.apiService.getTodos()
if (response.isSuccessful) {

_todos.value = response.body()?.todos!!
}

} catch (e: Exception) {
_toastMessage.value = e.message

} finally {
_isLoading.value = false

}
}

}

}

4. Automated tests in Android - Unit tests

Mobile Applications - 8. Automated tests in Android 25

• Another potential “unit” can be those classes used to implement view
models

The problem is that these view models
uses a coroutine scope provided by

Android (viewModelScope). But we
want to execute a unit test, not and

Android test

4. Automated tests in Android - Unit tests

Mobile Applications - 8. Automated tests in Android 26

@OptIn(ExperimentalCoroutinesApi::class)
class ViewModelTest {

private val testDispatcher = UnconfinedTestDispatcher()

@Before
fun setup() {

Dispatchers.setMain(testDispatcher)
}

@Test
fun viewModelTest() = runTest {

val viewModel = RestViewModel()
viewModel.fetchTodos()

val await = Awaitility.await().atMost(Duration.ofSeconds(5))
await.until { viewModel.todos.value.isNotEmpty() }

val todos = viewModel.todos.value
println("*** todos: $todos")

}

@After
fun tearDown() {

Dispatchers.resetMain()
}

} [versions]
awaitility = "4.3.0"

[libraries]
waitility = { module = "org.awaitility:awaitility", version.ref = "awaitility" }

testImplementation(libs.awaitility)

libs.version.toml

build.gradle.kts (app)

A solution is to use a coroutine test
dispatcher (i.e., a thread to be used
instead the thread pool provided in

the coroutine Android scope)

But in this case, in addition to the
test runner (runTest), we need

some mechanism to wait the
response, such as Awaitility

https://github.com/bonigarcia/android-examples/tree/main/TestAutomation
http://www.awaitility.org/

Table of contents
1. Introduction

2. Software testing

3. Test automation tools

4. Automated tests in Android

5. Continuous integration
− Build server

− GitHub Actions

6. Takeaways

Mobile Applications - 8. Automated tests in Android 27

5. Continuous integration
• Continuous Integration (CI) is a software development strategy where

members of a software project build, test, and integrate their work
continuously in three separate stages:

Mobile Applications - 8. Automated tests in Android 28

A build server, also known as
a CI server, is a dedicated

system that automates the
process of building, testing,

and deploying software
applications

Source code is typically
managed using a version
control system (like Git or

CVS)

5. Continuous integration - Build server
• A build server is server-side infrastructure that implement CI pipelines

(sometimes called workflows)
− A CI pipeline is a series of steps executed to build/test/deploy a given software

• Some popular build servers are:

Mobile Applications - 8. Automated tests in Android 29

https://docs.github.com/en/actions https://docs.gitlab.com/ee/ci/

https://www.jenkins.io/ https://www.atlassian.com/software/bamboo

https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/
https://www.jenkins.io/
https://www.atlassian.com/software/bamboo

5. Continuous integration - GitHub Actions
• You can find a separate GitHub repository (different than the usual for

examples) with a complete example of app, tests, and CI configuration

• Each time a new commit is done in the repo, the whole test suite
(local and instrumented) is executed in GitHub Actions

− When some test fails (regression), the development team is notified

Mobile Applications - 8. Automated tests in Android 30

https://github.com/bonigarcia/android-basic-app

https://github.com/bonigarcia/android-basic-app
https://github.com/bonigarcia/android-basic-app

Table of contents
1. Introduction

2. Software testing

3. Test automation tools

4. Automated tests in Android

5. Continuous integration

6. Takeaways

Mobile Applications - 8. Automated tests in Android 31

6. Takeaways
• Software testing consists of the dynamic evaluation of a piece of

software (SUT), giving a verdict about it

• In automated testing, we use specific software tools to develop test
scripts and control their execution against the SUT

• Android Studio provides seamless integration with JUnit 4 and
Jetpack Compose for unit and Android tests

• Development teams usually a server-side infrastructure called a build
server (such as GitHub Actions) to implement CI pipelines and
execute a suite of automated tests during the development lifecycle

Mobile Applications - 8. Automated tests in Android 32

