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1. Introduction
• This unit is devoted to introduce three different elements for the 

Android app development, namely:

− Services: app component that runs in the background without a 
user interface

− Notifications: messages that Android displays outside an 
app’s user interface to provide some information

− Alarms: scheduled tasks (time-based operations)
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2. Services
• A service is an Android app component that perform long-running 

general-purpose operations without needing to interact with the user 
(i.e., without a graphical interface) 

• There are three types of Android services:

− Bound: Service that enables the interaction between app components (e.g., 
activities or other services) 
• For example, and app that offers a service to other apps
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https://developer.android.com/guide/components/services

− Background: Services that performs an operation that is not 
directly noticed by the user
• For example, and app can use a background service to compact its storage

− Foreground:  Services that performs some operation that is 
noticeable to the user
• For example, an audio app that use a foreground service to play an audio 

track

Background and 
foreground are 

sometimes 
called “started” 

services

https://developer.android.com/guide/components/services


2. Services
• The lifecycle for started (background or foreground) and bound 

services is as follows:
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2. Services
• To create services in Java/Kotlin:

− We need to extend the Service class and register it in the manifest
− Bound services must override the lifecycle method onBind()

• This method returns an instance of IBinder which is an interface that allows clients to 
invoke methods defined by the service 

− In started services, the onBind() method should return null

• To start services in Java/Kotlin:
− Background  services are started by calling with the context method 
startService()

− Foreground  services requires are started by calling with the context method 
startForegroundService() and display a notification

− Bound services are initiated by calling the context method bindService()

Mobile Applications - 7. Services, notifications, and alarms in Android 7

https://developer.android.com/develop/background-work/services/bound-services

https://developer.android.com/develop/background-work/services/bound-services


2. Services
• The following demo created an started (background) service and a 

bound service:
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The background service 
simply receives a message 
from the UI and log it 10 

times

https://github.com/bonigarcia/android-examples/


class StartedService : Service() {
companion object {

const val TAG = "StartedService"
const val EXTRA_INPUT = "extra_input"

}

override fun onBind(intent: Intent?): IBinder? = null

override fun onStartCommand(intent: Intent?, flags: Int, startId: Int): Int {
val input = intent?.getStringExtra(EXTRA_INPUT) ?: getString(R.string.no_input)

CoroutineScope(Dispatchers.IO).launch {
for (i in 1..10) {

@SuppressLint("StringFormatMatches")
Log.d(TAG, getString(R.string.processing, input, i))
delay(1000)

}
stopSelf(startId)

}

return START_NOT_STICKY
}

override fun onDestroy() {
super.onDestroy()
Log.d(TAG, getString(R.string.service_destroyed))

}
}

2. Services
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<service
android:name=".StartedService"></service>

We need to declare our 
service (as app component) in 

the manifest file

A companion object allows us to define members 
(properties and functions) that belong to the class 

itself rather than to instances of the class

We uses a I/O coroutines (e.g., 
done for network or disk) to run 

tasks on a background thread (not 
the main thread)

Returns null because this is a started 
service (not a bound service)

If Android kills the service, it won’t restart 
automatically (unlike START_STICKY)

To shut down the 
service when done

https://github.com/bonigarcia/android-examples/


2. Services
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class BoundService : Service() {
private val binder = LocalBinder()
private val _progress = MutableStateFlow(0)
val progress: StateFlow<Int> = _progress

inner class LocalBinder : Binder() {
fun getService(): BoundService = this@BoundService

}

override fun onBind(intent: Intent): IBinder = binder

fun startTask() {
CoroutineScope(Dispatchers.IO).launch {

for (i in 1..100) {
delay(100)
_progress.value = i

}
}

}
}

The second service in this 
demo is a bound service that 
exposes a integer value every 
100ms and allows clients to 
start a task that updates this 

progress

https://github.com/bonigarcia/android-examples/


2. Services
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// Bound Service
Text(stringResource(R.string.bound_service), style = MaterialTheme.typography.headlineSmall)
Spacer(modifier = Modifier.height(16.dp))

if (serviceBound) {
val progress by boundService?.progress?.collectAsState() ?: mutableIntStateOf(0)

Text(stringResource(R.string.progress, progress))
Spacer(modifier = Modifier.height(8.dp))
Button(onClick = { boundService?.startTask() }) {

Text(stringResource(R.string.start_task))
}
Spacer(modifier = Modifier.height(8.dp))
Button(onClick = {

context.unbindService(connection)
serviceBound = false
boundService = null

}) {
Text(stringResource(R.string.unbind_service))

}
} else {

Button(onClick = {
val intent = Intent(context, BoundService::class.java)
context.bindService(intent, connection, BIND_AUTO_CREATE)

}) {
Text(stringResource(R.string.bind_to_service))

}
}

}
}

@Composable
fun ServiceDemoApp(modifier: Modifier = Modifier) {

var serviceBound by remember { mutableStateOf(false) }
var boundService: BoundService? by remember { mutableStateOf(null) }
val context = LocalContext.currentQ

val connection = remember {
object : android.content.ServiceConnection {

override fun onServiceConnected(
name: android.content.ComponentName?, service: IBinder?

) {
val binder = service as BoundService.LocalBinder
boundService = binder.getService()
serviceBound = true

}

override fun onServiceDisconnected(name: android.content.ComponentName?) {
serviceBound = false

}
}

}

// ...
Creates a ServiceConnection

object to handle binding 
lifecycle

When not bound: shows a 
button to bind to the service

When bound: displays 
progress (collected as state 

from the service)

https://github.com/bonigarcia/android-examples/
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3. Notifications
• A notification is a message that Android displays outside an app’s user 

interface to provide the user with reminders or other information

• There are different formats for Android notifications:
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https://developer.android.com/guide/topics/ui/notifiers/notifications

Status bar Heads-up notification Lock screenApp icon badge

https://developer.android.com/guide/topics/ui/notifiers/notifications


3. Notifications - Anatomy
• The design of a notification has different elements:

1. Small icon: required; set using setSmallIcon() in the notifications 
builder

2. App name: provided by the system

3. Time stamp: provided by the system. It can be overridden using setWhen()

4. Large icon: optional; set using setLargeIcon()

5. Title: optional; set using setContentTitle()

6. Text: optional; set using setContentText()
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https://developer.android.com/guide/topics/ui/notifiers/notifications

Nevertheless, some of these 
elements are not available 
in specific Android devices

https://developer.android.com/guide/topics/ui/notifiers/notifications


3. Notifications - Channels
• Starting in Android 8.0 (Oreo), all notifications must 

be assigned to a channel
− A channel is a categorization mechanism that allows us to 

group notifications into different types based on their 
content, importance, or other factors

• Users can customize different aspects of notifications 
(Settings →App & notifications → Notifications)

− For instance, users can disable notifications of specific 
apps
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3. Notifications - Status bar
• The examples repository contains a project implementing different kinds 

of notifications
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private fun createNotificationChannels() {
// Create the NotificationChannel, but only on API 26+ because
// the NotificationChannel class is not in the Support Library
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {

// Channel for standard notifications
val standardChannel = NotificationChannel(

STANDARD_CHANNEL_ID,
STANDARD_CHANNEL_NAME,
NotificationManager.IMPORTANCE_DEFAULT

).apply {
description = STANDARD_CHANNEL_DESCRIPTION

}

// Channel for heads-up notifications
val headsUpChannel = NotificationChannel(

HEADS_UP_CHANNEL_ID,
HEADS_UP_CHANNEL_NAME,
NotificationManager.IMPORTANCE_HIGH // Required for heads-up

).apply {
description = HEADS_UP_CHANNEL_DESCRIPTION

}

// Register the channels with the system
val notificationManager: NotificationManager =

context.getSystemService(Context.NOTIFICATION_SERVICE) as NotificationManager
notificationManager.createNotificationChannel(standardChannel)
notificationManager.createNotificationChannel(headsUpChannel)

}
}

First, we create the 
notifications channels

The channel is composed 
by an identifier, a name, 
an importance level, and 

a description

https://github.com/bonigarcia/android-examples/tree/main/Notifications


3. Notifications - Status bar
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<uses-permission android:name="android.permission.POST_NOTIFICATIONS" />

This permission is required in the manifest

@SuppressLint("MissingPermission")
fun statusBarNotification(title: String, content: String) {

val builder = NotificationCompat.Builder(context, STANDARD_CHANNEL_ID)
.setSmallIcon(android.R.drawable.ic_dialog_info)
.setContentTitle(title)
.setContentText(content)
.setPriority(NotificationCompat.PRIORITY_DEFAULT)

with(NotificationManagerCompat.from(context)) {
notify(NOTIFICATION_ID, builder.build())

}
}

Then, at some point we 
launch the notifications

https://github.com/bonigarcia/android-examples/tree/main/Notifications


@SuppressLint("MissingPermission")
fun headsUpNotification(title: String, content: String) {

val builder = NotificationCompat.Builder(context, HEADS_UP_CHANNEL_ID)
.setSmallIcon(android.R.drawable.ic_dialog_info)
.setContentTitle(title)
.setContentText(content)
.setPriority(NotificationCompat.PRIORITY_HIGH)
.setFullScreenIntent(null, true)
.addAction(R.drawable.ic_launcher_foreground,

context.getString(R.string.start_action), getPendingIntent())
.setAutoCancel(true)

with(NotificationManagerCompat.from(context)) {
notify(NOTIFICATION_ID + 1, builder.build())

}
}

fun getPendingIntent(): PendingIntent {
val intent = Intent(Intent.ACTION_DIAL, "tel:666555444".toUri())
return PendingIntent.getActivity(context, 0, intent, PendingIntent.FLAG_IMMUTABLE)

}

3. Notifications - Heads-up
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A PendingIntent is a token we give to a foreign app 
(e.g. NotificationManager) which allows this app to 

execute a given intent

https://github.com/bonigarcia/android-examples/tree/main/Notifications


3. Notifications - App icon badge
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The app icon badge (also known as notification dot) is a visual 
indicator displayed on the app’s icon to convey certain 

information or notifications to the user.

@SuppressLint("MissingPermission")
fun badgeNotification(title: String, content: String) {

val notification = NotificationCompat.Builder(context, STANDARD_CHANNEL_ID)
.setSmallIcon(R.drawable.baseline_notifications_24)
.setContentTitle(title)
.setContentText(content)
.setPriority(NotificationCompat.PRIORITY_DEFAULT)
.setContentIntent(getPendingIntent())
.setAutoCancel(true)
.setNumber(5) // This makes the badge appear
.setBadgeIconType(NotificationCompat.BADGE_ICON_SMALL)
.build()

with(NotificationManagerCompat.from(context)) {
notify(NOTIFICATION_ID + 2, notification)

}
}

https://github.com/bonigarcia/android-examples/tree/main/Notifications


3. Notifications - Lock screen
• Notifications can appear on the lock screen as of Android 5

− This feature can be useful, for example, in messaging apps

• To control the level of detail visible in the notification from the lock 
screen, call setVisibility() and specify one of the following 
values:

− VISIBILITY_PUBLIC: the notification full content shows on the lock screen

− VISIBILITY_SECRET: no part of the notification shows on the lock screen

− VISIBILITY_PRIVATE: only basic information, such as the notification icon 
and the content title, shows on the lock screen. The notification full content 
doesn’t show
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https://developer.android.com/develop/ui/views/notifications/build-notification#lockscreenNotification

We see an example of 
lock screen notification in 

the next section 

https://developer.android.com/develop/ui/views/notifications/build-notification#lockscreenNotification
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4. Alarms
• Alarms allows us to perform scheduled tasks, i.e., time-based 

operations outside the lifetime of an Android app
− For example, we could use an alarm to initiate a long-running operation, such 

as starting a service once a day to do a network request

• There are two main types of alarms:
− One-time alarms: Triggered at a single specified time in the future. Once the 

alarm goes off, it is automatically canceled

− Repeating alarms: Triggered repeatedly at regular intervals. It can be 
cancelled programmatically

• Alarms are managed using the class AlarmManager:
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https://developer.android.com/training/scheduling/alarms

val alarmManager = context.getSystemService(Context.ALARM_SERVICE) as AlarmManager

https://developer.android.com/training/scheduling/alarms


class AlarmsHelper(private val context: Context, private val alarmManager: AlarmManager) {

fun setOneTimeAlarm() {
// Set the alarm to trigger 10 seconds from now
val triggerTime = System.currentTimeMillis() + 10_000

alarmManager.setExactAndAllowWhileIdle(
AlarmManager.RTC_WAKEUP, triggerTime, getPendingIntent()

)
}

private fun getPendingIntent(): PendingIntent {
val intent = Intent(context, AlarmReceiver::class.java).apply {

putExtra(MSG_KEY, context.getString(R.string.repeating_alarm_msg))
}
val pendingIntent = PendingIntent.getBroadcast(

context, REPEATING_ALARM_REQUEST_CODE, intent, PendingIntent.FLAG_IMMUTABLE
)
return pendingIntent

}

}

4. Alarms
• The examples repository contains an app using a couple of basic alarms
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Alarms can be triggered depending on this value:
- ELAPSED_REALTIME : Based on the amount of time since the device was 

booted. It does not wake the device up if it is asleep
- ELAPSED_REALTIME_WAKEUP : Based on the amount of time since the 

device was booted. It wake the device up if it is asleep
- RTC : Using absolute time. It does not wake the device up if it is asleep
- RTC_WAKEUP : Using absolute time. It wake the device up if it is asleep

Schedules an exact alarm to trigger 
at a precise time, even if the device 

is asleep (or Doze mode, i.e., 
attempting to conserve battery)

https://github.com/bonigarcia/android-examples/tree/main/Alarm


fun setRepeatingAlarm() {
// Set the alarm to start approximately 10 seconds from now and repeat every minute
val triggerTime = System.currentTimeMillis() + 10_000
val repeatInterval = 60_000L // 1 minute in milliseconds

alarmManager.setRepeating(
AlarmManager.RTC_WAKEUP, triggerTime, repeatInterval, getPendingIntent()

)
}

fun cancelRepeatingAlarm() {
val intent = Intent(context, AlarmReceiver::class.java)
val pendingIntent = PendingIntent.getBroadcast(

context,  REPEATING_ALARM_REQUEST_CODE, intent, PendingIntent.FLAG_IMMUTABLE
)

alarmManager.cancel(getPendingIntent())
pendingIntent.cancel()

}

4. Alarms
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When using setRepeating(), 
Android synchronizes multiple 

repeating alarms and fires them at the 
same time (to reduce the use of the 
battery). Therefore, the repeating 

interval is not exact 

https://github.com/bonigarcia/android-examples/


4. Alarms
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• We can enable a screen lock 
(Settings →Security → Screen lock) 
to see the lock screen notification in 
this demo app

val builder = NotificationCompat.Builder(context, CHANNEL_ID)
.setSmallIcon(android.R.drawable.ic_dialog_info)
.setContentTitle(context.getString(R.string.alarm_notification))
.setContentText(message)
.setPriority(NotificationCompat.PRIORITY_DEFAULT)
.setContentIntent(pendingIntent)
.setVisibility(NotificationCompat.VISIBILITY_PUBLIC)

with(NotificationManagerCompat.from(context)) {
notify(NOTIFICATION_ID, builder.build())

}
}

https://github.com/bonigarcia/android-examples/
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5. Takeaways
• A service is an app component that runs in the background to perform 

long-running general-purpose operations

• There are two types of services: background (not directly noticed by the 
user), foreground (noticeable to the user), and bounded (which offers a 
client-server interface to interaction between app components)

• A notification is a message that Android displays outside an app’s user 
interface to provide the user with reminders or other information

• There are different types of notifications (status bar, heads-up, app icon 
badge, and lock screen notification)

• Alarms are scheduled tasks that allows to perform time-based 
operations outside the lifetime of an Android app
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