
Mobile Applications
7. Services, notifications, and alarms in

Android

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction

2. Services

3. Notifications

4. Alarms

5. Takeaways

Mobile Applications - 7. Services, notifications, and alarms in Android 2

1. Introduction
• This unit is devoted to introduce three different elements for the

Android app development, namely:

− Services: app component that runs in the background without a
user interface

− Notifications: messages that Android displays outside an
app’s user interface to provide some information

− Alarms: scheduled tasks (time-based operations)

Mobile Applications - 7. Services, notifications, and alarms in Android 3

Table of contents
1. Introduction

2. Services

3. Notifications

4. Alarms

5. Takeaways

Mobile Applications - 7. Services, notifications, and alarms in Android 4

2. Services
• A service is an Android app component that perform long-running

general-purpose operations without needing to interact with the user
(i.e., without a graphical interface)

• There are three types of Android services:

− Bound: Service that enables the interaction between app components (e.g.,
activities or other services)
• For example, and app that offers a service to other apps

Mobile Applications - 7. Services, notifications, and alarms in Android 5

https://developer.android.com/guide/components/services

− Background: Services that performs an operation that is not
directly noticed by the user
• For example, and app can use a background service to compact its storage

− Foreground: Services that performs some operation that is
noticeable to the user
• For example, an audio app that use a foreground service to play an audio

track

Background and
foreground are

sometimes
called “started”

services

https://developer.android.com/guide/components/services

2. Services
• The lifecycle for started (background or foreground) and bound

services is as follows:

Mobile Applications - 7. Services, notifications, and alarms in Android 6

https://developer.android.com/guide/components/services

https://developer.android.com/guide/components/services

2. Services
• To create services in Java/Kotlin:

− We need to extend the Service class and register it in the manifest
− Bound services must override the lifecycle method onBind()

• This method returns an instance of IBinder which is an interface that allows clients to
invoke methods defined by the service

− In started services, the onBind() method should return null

• To start services in Java/Kotlin:
− Background services are started by calling with the context method
startService()

− Foreground services requires are started by calling with the context method
startForegroundService() and display a notification

− Bound services are initiated by calling the context method bindService()

Mobile Applications - 7. Services, notifications, and alarms in Android 7

https://developer.android.com/develop/background-work/services/bound-services

https://developer.android.com/develop/background-work/services/bound-services

2. Services
• The following demo created an started (background) service and a

bound service:

Mobile Applications - 7. Services, notifications, and alarms in Android 8

The background service
simply receives a message
from the UI and log it 10

times

https://github.com/bonigarcia/android-examples/

class StartedService : Service() {
companion object {

const val TAG = "StartedService"
const val EXTRA_INPUT = "extra_input"

}

override fun onBind(intent: Intent?): IBinder? = null

override fun onStartCommand(intent: Intent?, flags: Int, startId: Int): Int {
val input = intent?.getStringExtra(EXTRA_INPUT) ?: getString(R.string.no_input)

CoroutineScope(Dispatchers.IO).launch {
for (i in 1..10) {

@SuppressLint("StringFormatMatches")
Log.d(TAG, getString(R.string.processing, input, i))
delay(1000)

}
stopSelf(startId)

}

return START_NOT_STICKY
}

override fun onDestroy() {
super.onDestroy()
Log.d(TAG, getString(R.string.service_destroyed))

}
}

2. Services

Mobile Applications - 7. Services, notifications, and alarms in Android 9

<service
android:name=".StartedService"></service>

We need to declare our
service (as app component) in

the manifest file

A companion object allows us to define members
(properties and functions) that belong to the class

itself rather than to instances of the class

We uses a I/O coroutines (e.g.,
done for network or disk) to run

tasks on a background thread (not
the main thread)

Returns null because this is a started
service (not a bound service)

If Android kills the service, it won’t restart
automatically (unlike START_STICKY)

To shut down the
service when done

https://github.com/bonigarcia/android-examples/

2. Services

Mobile Applications - 7. Services, notifications, and alarms in Android 10

class BoundService : Service() {
private val binder = LocalBinder()
private val _progress = MutableStateFlow(0)
val progress: StateFlow<Int> = _progress

inner class LocalBinder : Binder() {
fun getService(): BoundService = this@BoundService

}

override fun onBind(intent: Intent): IBinder = binder

fun startTask() {
CoroutineScope(Dispatchers.IO).launch {

for (i in 1..100) {
delay(100)
_progress.value = i

}
}

}
}

The second service in this
demo is a bound service that
exposes a integer value every
100ms and allows clients to
start a task that updates this

progress

https://github.com/bonigarcia/android-examples/

2. Services

Mobile Applications - 7. Services, notifications, and alarms in Android 11

// Bound Service
Text(stringResource(R.string.bound_service), style = MaterialTheme.typography.headlineSmall)
Spacer(modifier = Modifier.height(16.dp))

if (serviceBound) {
val progress by boundService?.progress?.collectAsState() ?: mutableIntStateOf(0)

Text(stringResource(R.string.progress, progress))
Spacer(modifier = Modifier.height(8.dp))
Button(onClick = { boundService?.startTask() }) {

Text(stringResource(R.string.start_task))
}
Spacer(modifier = Modifier.height(8.dp))
Button(onClick = {

context.unbindService(connection)
serviceBound = false
boundService = null

}) {
Text(stringResource(R.string.unbind_service))

}
} else {

Button(onClick = {
val intent = Intent(context, BoundService::class.java)
context.bindService(intent, connection, BIND_AUTO_CREATE)

}) {
Text(stringResource(R.string.bind_to_service))

}
}

}
}

@Composable
fun ServiceDemoApp(modifier: Modifier = Modifier) {

var serviceBound by remember { mutableStateOf(false) }
var boundService: BoundService? by remember { mutableStateOf(null) }
val context = LocalContext.currentQ

val connection = remember {
object : android.content.ServiceConnection {

override fun onServiceConnected(
name: android.content.ComponentName?, service: IBinder?

) {
val binder = service as BoundService.LocalBinder
boundService = binder.getService()
serviceBound = true

}

override fun onServiceDisconnected(name: android.content.ComponentName?) {
serviceBound = false

}
}

}

// ...
Creates a ServiceConnection

object to handle binding
lifecycle

When not bound: shows a
button to bind to the service

When bound: displays
progress (collected as state

from the service)

https://github.com/bonigarcia/android-examples/

Table of contents
1. Introduction

2. Services

3. Notifications
- Anatomy

- Channels

- Status bar

- Heads-up

- App icon badge

- Lock screen

4. Alarms

5. Takeaways

Mobile Applications - 7. Services, notifications, and alarms in Android 12

3. Notifications
• A notification is a message that Android displays outside an app’s user

interface to provide the user with reminders or other information

• There are different formats for Android notifications:

Mobile Applications - 7. Services, notifications, and alarms in Android 13

https://developer.android.com/guide/topics/ui/notifiers/notifications

Status bar Heads-up notification Lock screenApp icon badge

https://developer.android.com/guide/topics/ui/notifiers/notifications

3. Notifications - Anatomy
• The design of a notification has different elements:

1. Small icon: required; set using setSmallIcon() in the notifications
builder

2. App name: provided by the system

3. Time stamp: provided by the system. It can be overridden using setWhen()

4. Large icon: optional; set using setLargeIcon()

5. Title: optional; set using setContentTitle()

6. Text: optional; set using setContentText()

Mobile Applications - 7. Services, notifications, and alarms in Android 14

https://developer.android.com/guide/topics/ui/notifiers/notifications

Nevertheless, some of these
elements are not available
in specific Android devices

https://developer.android.com/guide/topics/ui/notifiers/notifications

3. Notifications - Channels
• Starting in Android 8.0 (Oreo), all notifications must

be assigned to a channel
− A channel is a categorization mechanism that allows us to

group notifications into different types based on their
content, importance, or other factors

• Users can customize different aspects of notifications
(Settings →App & notifications → Notifications)

− For instance, users can disable notifications of specific
apps

Mobile Applications - 7. Services, notifications, and alarms in Android 15

3. Notifications - Status bar
• The examples repository contains a project implementing different kinds

of notifications

Mobile Applications - 7. Services, notifications, and alarms in Android 16

private fun createNotificationChannels() {
// Create the NotificationChannel, but only on API 26+ because
// the NotificationChannel class is not in the Support Library
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {

// Channel for standard notifications
val standardChannel = NotificationChannel(

STANDARD_CHANNEL_ID,
STANDARD_CHANNEL_NAME,
NotificationManager.IMPORTANCE_DEFAULT

).apply {
description = STANDARD_CHANNEL_DESCRIPTION

}

// Channel for heads-up notifications
val headsUpChannel = NotificationChannel(

HEADS_UP_CHANNEL_ID,
HEADS_UP_CHANNEL_NAME,
NotificationManager.IMPORTANCE_HIGH // Required for heads-up

).apply {
description = HEADS_UP_CHANNEL_DESCRIPTION

}

// Register the channels with the system
val notificationManager: NotificationManager =

context.getSystemService(Context.NOTIFICATION_SERVICE) as NotificationManager
notificationManager.createNotificationChannel(standardChannel)
notificationManager.createNotificationChannel(headsUpChannel)

}
}

First, we create the
notifications channels

The channel is composed
by an identifier, a name,
an importance level, and

a description

https://github.com/bonigarcia/android-examples/tree/main/Notifications

3. Notifications - Status bar

Mobile Applications - 7. Services, notifications, and alarms in Android 17

<uses-permission android:name="android.permission.POST_NOTIFICATIONS" />

This permission is required in the manifest

@SuppressLint("MissingPermission")
fun statusBarNotification(title: String, content: String) {

val builder = NotificationCompat.Builder(context, STANDARD_CHANNEL_ID)
.setSmallIcon(android.R.drawable.ic_dialog_info)
.setContentTitle(title)
.setContentText(content)
.setPriority(NotificationCompat.PRIORITY_DEFAULT)

with(NotificationManagerCompat.from(context)) {
notify(NOTIFICATION_ID, builder.build())

}
}

Then, at some point we
launch the notifications

https://github.com/bonigarcia/android-examples/tree/main/Notifications

@SuppressLint("MissingPermission")
fun headsUpNotification(title: String, content: String) {

val builder = NotificationCompat.Builder(context, HEADS_UP_CHANNEL_ID)
.setSmallIcon(android.R.drawable.ic_dialog_info)
.setContentTitle(title)
.setContentText(content)
.setPriority(NotificationCompat.PRIORITY_HIGH)
.setFullScreenIntent(null, true)
.addAction(R.drawable.ic_launcher_foreground,

context.getString(R.string.start_action), getPendingIntent())
.setAutoCancel(true)

with(NotificationManagerCompat.from(context)) {
notify(NOTIFICATION_ID + 1, builder.build())

}
}

fun getPendingIntent(): PendingIntent {
val intent = Intent(Intent.ACTION_DIAL, "tel:666555444".toUri())
return PendingIntent.getActivity(context, 0, intent, PendingIntent.FLAG_IMMUTABLE)

}

3. Notifications - Heads-up

Mobile Applications - 7. Services, notifications, and alarms in Android 18

A PendingIntent is a token we give to a foreign app
(e.g. NotificationManager) which allows this app to

execute a given intent

https://github.com/bonigarcia/android-examples/tree/main/Notifications

3. Notifications - App icon badge

Mobile Applications - 7. Services, notifications, and alarms in Android 19

The app icon badge (also known as notification dot) is a visual
indicator displayed on the app’s icon to convey certain

information or notifications to the user.

@SuppressLint("MissingPermission")
fun badgeNotification(title: String, content: String) {

val notification = NotificationCompat.Builder(context, STANDARD_CHANNEL_ID)
.setSmallIcon(R.drawable.baseline_notifications_24)
.setContentTitle(title)
.setContentText(content)
.setPriority(NotificationCompat.PRIORITY_DEFAULT)
.setContentIntent(getPendingIntent())
.setAutoCancel(true)
.setNumber(5) // This makes the badge appear
.setBadgeIconType(NotificationCompat.BADGE_ICON_SMALL)
.build()

with(NotificationManagerCompat.from(context)) {
notify(NOTIFICATION_ID + 2, notification)

}
}

https://github.com/bonigarcia/android-examples/tree/main/Notifications

3. Notifications - Lock screen
• Notifications can appear on the lock screen as of Android 5

− This feature can be useful, for example, in messaging apps

• To control the level of detail visible in the notification from the lock
screen, call setVisibility() and specify one of the following
values:

− VISIBILITY_PUBLIC: the notification full content shows on the lock screen

− VISIBILITY_SECRET: no part of the notification shows on the lock screen

− VISIBILITY_PRIVATE: only basic information, such as the notification icon
and the content title, shows on the lock screen. The notification full content
doesn’t show

Mobile Applications - 7. Services, notifications, and alarms in Android 20

https://developer.android.com/develop/ui/views/notifications/build-notification#lockscreenNotification

We see an example of
lock screen notification in

the next section

https://developer.android.com/develop/ui/views/notifications/build-notification#lockscreenNotification

Table of contents
1. Introduction

2. Services

3. Notifications

4. Alarms

5. Takeaways

Mobile Applications - 7. Services, notifications, and alarms in Android 21

4. Alarms
• Alarms allows us to perform scheduled tasks, i.e., time-based

operations outside the lifetime of an Android app
− For example, we could use an alarm to initiate a long-running operation, such

as starting a service once a day to do a network request

• There are two main types of alarms:
− One-time alarms: Triggered at a single specified time in the future. Once the

alarm goes off, it is automatically canceled

− Repeating alarms: Triggered repeatedly at regular intervals. It can be
cancelled programmatically

• Alarms are managed using the class AlarmManager:

Mobile Applications - 7. Services, notifications, and alarms in Android 22

https://developer.android.com/training/scheduling/alarms

val alarmManager = context.getSystemService(Context.ALARM_SERVICE) as AlarmManager

https://developer.android.com/training/scheduling/alarms

class AlarmsHelper(private val context: Context, private val alarmManager: AlarmManager) {

fun setOneTimeAlarm() {
// Set the alarm to trigger 10 seconds from now
val triggerTime = System.currentTimeMillis() + 10_000

alarmManager.setExactAndAllowWhileIdle(
AlarmManager.RTC_WAKEUP, triggerTime, getPendingIntent()

)
}

private fun getPendingIntent(): PendingIntent {
val intent = Intent(context, AlarmReceiver::class.java).apply {

putExtra(MSG_KEY, context.getString(R.string.repeating_alarm_msg))
}
val pendingIntent = PendingIntent.getBroadcast(

context, REPEATING_ALARM_REQUEST_CODE, intent, PendingIntent.FLAG_IMMUTABLE
)
return pendingIntent

}

}

4. Alarms
• The examples repository contains an app using a couple of basic alarms

Mobile Applications - 7. Services, notifications, and alarms in Android 23

Alarms can be triggered depending on this value:
- ELAPSED_REALTIME : Based on the amount of time since the device was

booted. It does not wake the device up if it is asleep
- ELAPSED_REALTIME_WAKEUP : Based on the amount of time since the

device was booted. It wake the device up if it is asleep
- RTC : Using absolute time. It does not wake the device up if it is asleep
- RTC_WAKEUP : Using absolute time. It wake the device up if it is asleep

Schedules an exact alarm to trigger
at a precise time, even if the device

is asleep (or Doze mode, i.e.,
attempting to conserve battery)

https://github.com/bonigarcia/android-examples/tree/main/Alarm

fun setRepeatingAlarm() {
// Set the alarm to start approximately 10 seconds from now and repeat every minute
val triggerTime = System.currentTimeMillis() + 10_000
val repeatInterval = 60_000L // 1 minute in milliseconds

alarmManager.setRepeating(
AlarmManager.RTC_WAKEUP, triggerTime, repeatInterval, getPendingIntent()

)
}

fun cancelRepeatingAlarm() {
val intent = Intent(context, AlarmReceiver::class.java)
val pendingIntent = PendingIntent.getBroadcast(

context, REPEATING_ALARM_REQUEST_CODE, intent, PendingIntent.FLAG_IMMUTABLE
)

alarmManager.cancel(getPendingIntent())
pendingIntent.cancel()

}

4. Alarms

Mobile Applications - 7. Services, notifications, and alarms in Android 24

When using setRepeating(),
Android synchronizes multiple

repeating alarms and fires them at the
same time (to reduce the use of the
battery). Therefore, the repeating

interval is not exact

https://github.com/bonigarcia/android-examples/

4. Alarms

Mobile Applications - 7. Services, notifications, and alarms in Android 25

• We can enable a screen lock
(Settings →Security → Screen lock)
to see the lock screen notification in
this demo app

val builder = NotificationCompat.Builder(context, CHANNEL_ID)
.setSmallIcon(android.R.drawable.ic_dialog_info)
.setContentTitle(context.getString(R.string.alarm_notification))
.setContentText(message)
.setPriority(NotificationCompat.PRIORITY_DEFAULT)
.setContentIntent(pendingIntent)
.setVisibility(NotificationCompat.VISIBILITY_PUBLIC)

with(NotificationManagerCompat.from(context)) {
notify(NOTIFICATION_ID, builder.build())

}
}

https://github.com/bonigarcia/android-examples/

Table of contents
1. Introduction

2. Services

3. Notifications

4. Alarms

5. Takeaways

Mobile Applications - 7. Services, notifications, and alarms in Android 26

5. Takeaways
• A service is an app component that runs in the background to perform

long-running general-purpose operations

• There are two types of services: background (not directly noticed by the
user), foreground (noticeable to the user), and bounded (which offers a
client-server interface to interaction between app components)

• A notification is a message that Android displays outside an app’s user
interface to provide the user with reminders or other information

• There are different types of notifications (status bar, heads-up, app icon
badge, and lock screen notification)

• Alarms are scheduled tasks that allows to perform time-based
operations outside the lifetime of an Android app

Mobile Applications - 7. Services, notifications, and alarms in Android 27

