
Mobile Applications
6. Maps and location-based services for 

Android

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es


Table of contents
1. Introduction

2. Location-based services

3. Google Maps Platform

4. Takeaways

Mobile Applications - 6. Maps and location-based services for Android 2



1. Introduction
• In this unit, we study two kind of features for Android apps:

1. Location-based services
− Emulated location

− Location providers

− Geocoding and reverse geocoding

2. Google Maps Platform
− Google Maps

− Google Places

− Google Directions

Mobile Applications - 6. Maps and location-based services for Android 3



Table of contents
1. Introduction

2. Location-based services
− Emulated location

− Locations permissions

− Locations providers

− Location listener

− Geocoding

3. Google Maps Platform

4. Takeaways

Mobile Applications - 6. Maps and location-based services for Android 4



2. Location-based services
• A location-based service (LBS) is a software service for mobile apps 

that requires the knowledge about where the device is geographically 
located

• We study:
− How to emulate the device location using and emulator in Android Studio

− The permissions required to manage the device location

− The most common types of location providers in Android

− How to implement a location listener (i.e., an app that tracks the location 
changes)

− How to implement geocoding in Android (i.e., translate an address to its 
coordinates and vice versa)

Mobile Applications - 6. Maps and location-based services for Android 5

https://developer.android.com/training/location

https://developer.android.com/training/location


2. Location-based services - Emulated location
• Android Studio allows to change the location of the device, and even 

simulate routes

Mobile Applications - 6. Maps and location-based services for Android 6



2. Location-based services - Location permissions

• To protect user privacy, apps that use location services must request 
location permissions

• There are different types of permissions regarding the location accuracy:
− Precise: access to the device's GPS coordinates

• Pro: It provides accurate real-time location 

• Cons: It consumes more battery

− Approximate: location data based on less accurate sources like the network 
address (wifi or cellular)
• Pro: It is more battery friendly

• Cons: It provides an approximate location

Mobile Applications - 6. Maps and location-based services for Android 7

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

As usual, we declare 
these permission in 

the manifest file



2. Location-based services - Location providers
• Depending on the device, there are different alternatives to discover 

the location
− This way, we use different location providers for implementing these 

alternatives
− In Kotlin or Java, we select location providers using the class 
LocationManager

• Some common locations providers in Android are:
− LocationManager.GPS_PROVIDER : Based on Global Positioning System 

(GPS), i.e., coordinates obtained by satellites
− LocationManager.NETWORK_PROVIDER : This provider determines location 

based on nearby of cell tower and wifi access points. Operation of this provider 
may require a data connection

− LocationManager.FUSED_PROVIDER : This provider may combine inputs 
from several other location providers to provide the best possible location

Mobile Applications - 6. Maps and location-based services for Android 8

https://developer.android.com/reference/android/location/LocationManager

https://developer.android.com/reference/android/location/LocationManager


2. Location-based services - Location listener

Mobile Applications - 6. Maps and location-based services for Android 9

@Composable
fun LocationApp(modifier: Modifier = Modifier) {

val context = LocalContext.current
var location by remember { mutableStateOf("") }
var permissionsGranted by remember { mutableStateOf(false) }

val permissionLauncher = rememberLauncherForActivityResult(
contract = ActivityResultContracts.RequestPermission()

) { isGranted ->
permissionsGranted = isGranted
if (!isGranted) {

Toast.makeText(
context, context.getString(R.string.permissions_denied), Toast.LENGTH_LONG

).show()
}

}
if (permissionsGranted) {

LaunchedEffect(Unit) {
enableLocationManager(context) { loc ->

location = context.getString(R.string.lat_long, loc.latitude, loc.longitude)
}

}
}
Column(

modifier = modifier.fillMaxSize().padding(16.dp),
verticalArrangement = Arrangement.Center,
horizontalAlignment = Alignment.CenterHorizontally

) {
Button(

onClick = {
permissionLauncher.launch(Manifest.permission.ACCESS_FINE_LOCATION)

}) {
Text(stringResource(R.string.get_location))

}
Spacer(modifier = Modifier.height(16.dp))
Text(text = location, style = MaterialTheme.typography.bodyLarge)

}
}

@SuppressLint("MissingPermission")
fun enableLocationManager(context: Context, onLocationUpdate: (Location) -> Unit) {

val locationManager = context.getSystemService(Context.LOCATION_SERVICE) as LocationManager
val locationListener = LocationListener { location ->

onLocationUpdate(location)
}
locationManager.requestLocationUpdates(

LocationManager.GPS_PROVIDER, 0L, 1f, locationListener
)

}

We register a 
location listener here

https://github.com/bonigarcia/android-examples/tree/main/Location


2. Location-based services - Geocoding
• Geocoding is the process of converting human-readable addresses (like 

"1600 Amphitheatre Parkway, Mountain View, CA") into geographic 
coordinates (like latitude 37.423021 and longitude -122.083739)
− This process is sometimes referred as forward geocoding

− Some uses of geocoding are: to place markers on a map, or centering a map

• Reverse geocoding is the process of converting geographic coordinates 
into a human-readable address

• We use the Geocoder class to implement both features in Android apps
− We also need to declare the Internet connection permission 

Mobile Applications - 6. Maps and location-based services for Android 10

https://developers.google.com/maps/documentation/geocoding/

<uses-permission android:name="android.permission.INTERNET" />

https://developers.google.com/maps/documentation/geocoding/


2. Location-based services - Geocoding

Mobile Applications - 6. Maps and location-based services for Android 11

class GeocodingViewModel : ViewModel() {
private val _address = MutableStateFlow("")
val address: StateFlow<String> = _address

private val _coordinates = MutableStateFlow("")
val coordinates: StateFlow<String> = _coordinates

private val _errorMessage = MutableStateFlow("")
val errorMessage: StateFlow<String> = _errorMessage

fun geocodeAddress(context: Context, address: String) {
viewModelScope.launch {

try {
val geocoder = Geocoder(context, Locale.getDefault())
val addresses = geocoder.getFromLocationName(address, 1)
if (addresses?.isNotEmpty() == true) {

val location = addresses[0]
val lat = location.latitude
val lng = location.longitude
_coordinates.value = "Lat: $lat, Lng: $lng"
_errorMessage.value = ""

}
} catch (e: Exception) {

setErrorMessage(e.message)
}

}
}

fun setErrorMessage(message: String?) {
_errorMessage.value = message.orEmpty()

}
}

https://github.com/bonigarcia/android-examples/tree/main/Geocoding


2. Location-based services - Geocoding

Mobile Applications - 6. Maps and location-based services for Android 12

class GeocodingViewModel : ViewModel() {
private val _address = MutableStateFlow("")
val address: StateFlow<String> = _address

private val _coordinates = MutableStateFlow("")
val coordinates: StateFlow<String> = _coordinates

private val _errorMessage = MutableStateFlow("")
val errorMessage: StateFlow<String> = _errorMessage

fun reverseGeocode(context: Context, lat: Double, lng: Double) {
viewModelScope.launch {

try {
val geocoder = Geocoder(context, Locale.getDefault())
val addresses = geocoder.getFromLocation(lat, lng, 1)
if (addresses?.isNotEmpty() == true) {

val address = addresses[0]
val addressText = (0..address.maxAddressLineIndex).joinToString("\n") {

address.getAddressLine(it)
}
_address.value = addressText
_errorMessage.value = ""

}
} catch (e: Exception) {

setErrorMessage(e.message)
}

}
}

fun setErrorMessage(message: String?) {
_errorMessage.value = message.orEmpty()

}
}

https://github.com/bonigarcia/android-examples/tree/main/Geocoding


Table of contents
1. Introduction

2. Location-based services

3. Google Maps Platform
− Google Play Services

− Google Maps

− Google Places

− Google Directions

4. Takeaways

Mobile Applications - 6. Maps and location-based services for Android 13



3. Google Maps Platform
• The Google Maps Platform (previously called Google Maps API) is a 

set of APIs and SDKs that allows to develop map-based services

• Some of the services provided by the Google Maps Platforms are:
− Satellite imagery, aerial photography, street maps, 360° interactive panoramic 

views of streets (Street View), real-time traffic conditions, or route planning

• We can use the Google Maps Platforms for different types of apps, 
such as web, mobile, or desktop applications

Mobile Applications - 6. Maps and location-based services for Android 14

https://developers.google.com/maps

https://developers.google.com/maps


3. Google Maps Platform - Google Play Services

• The Google Maps SDK on Android depends on the Google Play services
− Google Play Services is a background service produced by Google for Android 

devices

− These services include maps and location, single sign-on account services, user 
health and fitness tracking, payment processing, integrated advertising or 
security scanning

Mobile Applications - 6. Maps and location-based services for Android 15

https://developers.google.com/android/

We need to ensure that Google 
Play is enabled in the emulator 

with use for development in 
Android Studio

https://developers.google.com/android/


3. Google Maps Platform - Google Maps
• To use any API of Google Maps Platform, first we need we need 

enable this SDK in the Google Cloud console
− APIs & Services → Library

Mobile Applications - 6. Maps and location-based services for Android 16

https://console.cloud.google.com/

https://console.cloud.google.com/


3. Google Maps Platform - Google Maps
• Then, we need to create an API key:

Mobile Applications - 6. Maps and location-based services for Android 17

We need to copy a paste 
this key and keep it in a 

safe place (it is a secret, so 
it must not be shared)

https://console.cloud.google.com/

https://console.cloud.google.com/


3. Google Maps Platform - Google Maps
• To use Google Maps in an Android app, we need to declare the 

following dependency in our build.gradle.kts (app):

• In addition, we need to declare this permissions in the manifest:

• Finally, we need to declare an API Key in our manifest:

Mobile Applications - 6. Maps and location-based services for Android 18

<application
<meta-data

android:name="com.google.android.geo.API_KEY"
android:value="${MAPS_API_KEY}" />

</application>

For security, it is not a good 
practice to hard-code the 

API key in the manifest

dependencies {
implementation(libs.maps.compose)
implementation(libs.play.services.maps)

}

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

[versions]
mapsCompose = "4.3.3"
playServicesMaps = "19.1.0"

[libraries]
maps-compose = { module = "com.google.maps.android:maps-compose", version.ref = "mapsCompose" }
play-services-maps = { module = "com.google.android.gms:play-services-maps", version.ref = "playServicesMaps" }

build.gradle.kts (app) libs.version.toml

https://github.com/bonigarcia/android-examples/tree/main/GoogleMaps


3. Google Maps Platform - Google Maps
• We can use a Gradle plugin to store the API key safely in the 
local.properties file (which in local, and should not be public):

Mobile Applications - 6. Maps and location-based services for Android 19

MAPS_API_KEY=<my-apy-key>

plugins {
// ...
alias(libs.plugins.secrets.gradle) apply false

}

[versions]
secrets-gradle = "2.0.1"

[plugins]
secrets-gradle = { id = "com.google.android.libraries.mapsplatform.secrets-gradle-plugin", version.ref = "secrets-gradle" }

build.gradle.kts (project)

plugins {
// ...
alias(libs.plugins.secrets.gradle)

}

android {
// ...
buildFeatures {

// ...
buildConfig = true

}
}

build.gradle.kts (app)

libs.version.toml

local.properties

https://github.com/bonigarcia/android-examples/tree/main/GoogleMaps


3. Google Maps Platform - Google Maps

Mobile Applications - 6. Maps and location-based services for Android 20

@Composable
fun MapScreen(modifier: Modifier = Modifier) {

val statueOfLiberty = LatLng(40.6892, -74.0445)
val cameraPositionState = rememberCameraPositionState {

position = CameraPosition.fromLatLngZoom(statueOfLiberty, 15f)
}

GoogleMap(
modifier = modifier.fillMaxSize(),
cameraPositionState = cameraPositionState

) {
Marker(

state = MarkerState(position = statueOfLiberty),
title = stringResource(R.string.title),
snippet = stringResource(R.string.description)

)
}

} This basic demo renders a map 
with Google Maps in a fixed 
coordinates a with a Marker

https://developers.google.com/maps/documentation/android-sdk/maps-compose

https://github.com/bonigarcia/android-examples/tree/main/GoogleMaps
https://developers.google.com/maps/documentation/android-sdk/maps-compose


3. Google Maps Platform - Google Places
• The Google Places API is a web service provided by Google that 

allows developers to access detailed information about places 
(businesses, landmarks, geographic locations, etc.)
− We are going to consume this API using a Java wrapper library (i.e., not 

requesting directly the web service API)

• Google Places is part of the Google Maps Platform and enables 
applications to search for places, retrieve place details, or auto-
complete place names based on user input

Mobile Applications - 6. Maps and location-based services for Android 21

https://developers.google.com/maps/documentation/places/android-sdk/overview

https://developers.google.com/maps/documentation/places/android-sdk/overview


3. Google Maps Platform - Google Places
• To use Google Places, first we need to enable it in the Google Cloud 

console:
− APIs & Services → Library

Mobile Applications - 6. Maps and location-based services for Android 22

https://console.cloud.google.com/

https://console.cloud.google.com/


3. Google Maps Platform - Google Places
• To use Google Places, we need to declare the following permissions in 

the manifest:

• Then, we need to include the following dependency in our project:

Mobile Applications - 6. Maps and location-based services for Android 23

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

dependencies {
implementation(libs.places)

}

build.gradle.kts (app) libs.version.toml

[versions]
places = "4.1.0"

[libraries]
places = { module = "com.google.android.libraries.places:places", version.ref = "places" }



class PlacesViewModel : ViewModel() {
private lateinit var placesClient: PlacesClient

private val _predictions = MutableStateFlow<List<PlaceAutocomplete>>(emptyList())
val predictions: StateFlow<List<PlaceAutocomplete>> = _predictions

fun initializePlaces(context: Context) {
if (!Places.isInitialized()) {

Places.initialize(context, BuildConfig.MAPS_API_KEY)
}
placesClient = Places.createClient(context)

}

fun searchPlaces(query: String) {
viewModelScope.launch {

val request = FindAutocompletePredictionsRequest.builder().setQuery(query).build()

placesClient.findAutocompletePredictions(request).addOnSuccessListener { response ->
_predictions.value = response.autocompletePredictions.map { prediction ->

PlaceAutocomplete(
placeId = prediction.placeId,
primaryText = prediction.getPrimaryText(null).toString(),
secondaryText = prediction.getSecondaryText(null).toString()

)
}

}.addOnFailureListener { exception ->
exception.printStackTrace()

}
}

}

// ...

}

data class PlaceAutocomplete(
val placeId: String, val primaryText: String, val secondaryText: String

)

3. Google Maps Platform - Google Places

Mobile Applications - 6. Maps and location-based services for Android 24

We also need an API key 
for Google Places (we can 
use the same previously 

created)

https://github.com/bonigarcia/android-examples/tree/main/GooglePlaces


3. Google Maps Platform - Google Places

Mobile Applications - 6. Maps and location-based services for Android 25

class PlacesViewModel : ViewModel() {
private val _selectedPlace = MutableStateFlow<PlaceDetails?>(null)
val selectedPlace: StateFlow<PlaceDetails?> = _selectedPlace

// ...

fun getPlaceDetails(placeId: String) {
viewModelScope.launch {

val placeFields = listOf(
Place.Field.ID, Place.Field.NAME, Place.Field.ADDRESS,
Place.Field.LAT_LNG, Place.Field.PHOTO_METADATAS

)
val request = FetchPlaceRequest.builder(placeId, placeFields).build()

placesClient.fetchPlace(request).addOnSuccessListener { response ->
val place = response.place
place.photoMetadatas?.first()?.let {

val photoRequest = FetchPhotoRequest.builder(it).build()
placesClient.fetchPhoto(photoRequest).addOnSuccessListener { response ->

_selectedPlace.value = PlaceDetails(
name = place.displayName ?: "Unknown",
address = place.formattedAddress ?: "No address",
latLng = place.location ?: LatLng(0.0, 0.0),
bitmap = response.bitmap

)
}.addOnFailureListener { exception ->

exception.printStackTrace()
}

}
}.addOnFailureListener { exception ->

exception.printStackTrace()
}

}
}

}

data class PlaceDetails(
val name: String, val address: String, val latLng: LatLng, var bitmap: Bitmap

)

https://github.com/bonigarcia/android-examples/tree/main/GooglePlaces


3. Google Maps Platform - Google Directions
• The Google Directions API is a web service provided by Google as 

part of the Google Maps Platform that calculates directions between 
multiple locations
− It returns detailed route information, including travel time, distance, turn-by-

turn navigation steps, and even alternative routes for different travel modes 
(driving, walking, cycling, or public transit)

− Like we do with Google Places, we consume this API using a Java wrapper 
library (i.e., not requesting directly the web service API)

Mobile Applications - 6. Maps and location-based services for Android 26

https://developers.google.com/maps/documentation/directions

https://developers.google.com/maps/documentation/directions


3. Google Maps Platform - Google Directions
• To use Google Directions, first we need to enable it in the Google 

Cloud console:
− APIs & Services → Library

Mobile Applications - 6. Maps and location-based services for Android 27

https://console.cloud.google.com/

https://console.cloud.google.com/


3. Google Maps Platform - Google Directions
• To use Google Directions, we need to declare the following 

permissions in the manifest:

• Then, we need the following dependency:

Mobile Applications - 6. Maps and location-based services for Android 28

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

dependencies {
implementation(libs.google.google.maps.services)

}

build.gradle.kts (app)

libs.version.toml

[versions]
googleGoogleMapsServices = "2.2.0"

[libraries]
google-google-maps-services = { module = "com.google.maps:google-maps-services", version.ref = "googleGoogleMapsServices" }



3. Google Maps Platform - Google Directions

Mobile Applications - 6. Maps and location-based services for Android 29

fun getDirections(
origin: String, destination: String, callback: (DirectionsResult?, String?) -> 

Unit
) {

val context = GeoApiContext.Builder().apiKey(BuildConfig.MAPS_API_KEY).build()

DirectionsApi.newRequest(context).mode(TravelMode.DRIVING).origin(origin)
.destination(destination).alternatives(true)
.setCallback(object : PendingResult.Callback<DirectionsResult> {

override fun onResult(result: DirectionsResult) {
callback(result, null)

}

override fun onFailure(e: Throwable) {
callback(null, e.message)

}
})

}
@Composable
fun DrawRoute(route: DirectionsRoute) {

// Convert the polyline points to LatLng objects
val pathPoints = remember(route) {

route.overviewPolyline.decodePath().map { LatLng(it.lat, it.lng) }
}

// Draw the polyline
Polyline(

points = pathPoints,
color = Color.Blue,
width = 8f

)
}

https://github.com/bonigarcia/android-examples/tree/main/GoogleDirections


Table of contents
1. Introduction

2. Location-based services

3. Google Maps Platform

4. Takeaways

Mobile Applications - 6. Maps and location-based services for Android 30



4. Takeaways
• Location-based services (LBS) allows mobile device applications to 

known where the device is geographically located

• There are different location providers in Android, such as GPS or 
network based

• We can use LBS to implement different features in Android apps, such 
as location listener or geocoding (forward or reverse)

• The Google Maps Platform is a set of APIs and SDKs that allows to 
develop map-based services

• We can use these APIs in Android app to implement map-based 
features, such as render maps and put markers on it, search places, or 
get directions

Mobile Applications - 6. Maps and location-based services for Android 31


