
Mobile Applications
5. Using web services in Android

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. HTTP
3. REST services
4. REST clients in Android
5. Cloud functions
6. Takeaways

Mobile Applications - 5. Using web services in Android 2

1. Introduction

Mobile Applications - 5. Using web services in Android 3

HTTP

• Web applications:
− Provides a service to end users:

• Web services (sometimes called web APIs):
− Provides a service to other programs:

Web serverBrowser (web client)

HTTP

Web server (service
provider)App (service client)

HTML, CSS, JavaScript

JSON, YAML, XML

1. Introduction
• A web service is a distributed service that built on the top of HTTP
• Instead of sharing regular web resources (e.g., HTML documents),

web services transfers data into machine-readable file formats such
as JSON, YAML, or XML

• Web services provide an Application Programming Interface (API) for
sharing resources (e.g. some data into a database) used for example
by another by some software app (e.g., mobile app, a desktop app, or
another server)

• There are different types of web services, such as SOAP or REST
− We focus only in REST in this course, since it is widespread nowadays

Mobile Applications - 5. Using web services in Android 4

Table of contents
1. Introduction
2. HTTP
3. REST services
4. REST clients in Android
5. Cloud functions
6. Takeaways

Mobile Applications - 5. Using web services in Android 5

2. HTTP
• HTTP (Hypertext Transfer Protocol) is an application layer protocol in

the Internet reference model for transmitting hypermedia documents
(i.e., web pages)

• HTTP is based on a client-server architecture:

Mobile Applications - 5. Using web services in Android 6

HTTP request

HTTP response

HTTP

TCP

IP
End users use browser to

navigate the Web
(consuming web

applications)

2. HTTP
• HTTP messages can be:

− Request (from clients)
− Responses (from servers)

• HTTP defines methods (sometimes referred to as verbs) to indicate
the desired action to be performed on the identified resource
− Common methods: GET (for reading), POST (for sending data)

• HTTP headers are a list of strings sent and received in request and
response
− Headers include extra information about the communication

• HTTP response status codes indicate whether a specific HTTP request
has been successfully completed
− Common examples: 200 Ok, 404 not found, 500 internal server error

Mobile Applications - 5. Using web services in Android 7

2. HTTP
• Example of request-response:

Mobile Applications - 5. Using web services in Android 8

HTTP/1.1 200 OK

Date: Tue, 31 Dec 2023 23:59:59 GMT

Server: Apache/2.0.54 (Fedora)

Content-Type: text/html

Last-Modified: Mon, 30 Dec 2023 ...

Content-Length: 1221

<html>

<body>

<h1>Example page</h1>

. . .

</body>

</html>

GET /index.html HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/4.0
Accept: text/html, image/gif, image/jpeg

Request line

Response lineHTTP request

HTTP response

Headers

Empty line

Headers

Empty line

Body

2. HTTP
• HTTPS (Hypertext Transfer Protocol Secure) is the secure version of

HTTP
− With HTTPS it is achieved that sensitive information (passwords, etc.) cannot

be intercepted by an attacker, since the only thing he will obtain will be an
encrypted data stream that will be impossible for him/her to decrypt

• TLS (Transport Layer Security) is a protocol that provides encryption
over TCP connections

Mobile Applications - 5. Using web services in Android 9

HTTPS

TLS

TCP

IP

Table of contents
1. Introduction
2. HTTP
3. REST services

− JSON
− Tools

4. REST clients in Android
5. Cloud functions
6. Takeaways

Mobile Applications - 5. Using web services in Android 10

3. REST services
• REST (REpresentational State Transfer) is an architectural style for

designing distributed services
− REST is a very popular way for creating web services

• REST is built on top of HTTP, and therefore, it follows a client-server
architecture
− The service server handles a set of resources, listening for incoming requests

made by clients
− Each resource is identified uniquely using URLs known as endpoints
− Each resource has a representation, which is a machine-readable explanation

of the current state of a resource. We use a data-interchange format for
defining representations, such as JSON, YAML, or XML

Mobile Applications - 5. Using web services in Android 11

3. REST services
• We can use the HTTP methods (the so-called verbs) to map REST

actions
− The following table summarizes the HTTP methods used to create REST

services:

Mobile Applications - 5. Using web services in Android 12

HTTP Method Description
GET Read a resource
POST Send a new resource to the server
PUT Update a resource
DELETE Eliminate a resource
PATCH Update partially a resource
HEAD Ask if a given resource exists without

returning any of its representations
OPTIONS Retrieve the available verbs for a

given resource

Most important
methods (to implement

CRUD operations)

3. REST services
• Finally, we use the

HTTP status codes to
identify the response
associated with REST
actions

Mobile Applications - 5. Using web services in Android 13

Status Code Description
200 OK The request was successful, and the content requested was

returned (e.g., in a GET request)

201 Created The resource was created (e.g., in a POST or PUT request)

204 No content The action was successful, but no content was returned. This
status code is useful in actions that do not require a response
body (e.g., in a DELETE request)

301 Moved permanently The resource was moved to another location

400 Bad request The request has some problems (e.g., missing parameters)

401 Unauthorized The requested resource is not accessible for the user that made
the request

403 Forbidden The resource is not accessible, but unlike 401, authentication will
not affect the response

404 Not found The provided endpoint does not identify any resource

405 Method not allowed The used verb is not allowed (e.g., when using PUT in a read-only
resource)

500 Internal server error Generic unexpected condition in the server-side

The following table
summarizes the typical

HTTP status code
reused in REST

3. REST services
• The following figure shows a

sequence of requests and responses
of an example REST service that uses
different HTTP methods and
response codes

Mobile Applications - 5. Using web services in Android 14

3. REST services - JSON
• JSON (JavaScript Object Notation) is a lightweight data-interchange

format

Mobile Applications - 5. Using web services in Android 15

{
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 27,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"

},
{
"type": "office",
"number": "646 555-4567"

}
],
"children": [
"Catherine",
"Thomas",
"Trevor"

],
"spouse": null

}

− It is one of the most popular data
formats for web services nowadays

− The JSON format has been defined
as an open standard

− Example of JSON:

3. REST services - JSON
• JSON data can be:

− A collection of name/value pairs of objects
• An object begins with the symbol { and ends with }
• The name and value are separated by a colon (:)

− An ordered list of values:
• A list begins with the symbol [and ends with]
• A comma (,) is used to separate the elements in a list

− Values can be strings enclosed in double quotes (" "), numbers, boolean
values (true or false), or null

Mobile Applications - 5. Using web services in Android 16

https://www.json.org/

https://www.json.org/

3. REST services - Tools
• We can use different tools to interact with REST services
• To making GET requests, we can use directly a web browser

− For instance: https://dummyjson.com/recipes

Mobile Applications - 5. Using web services in Android 17

DummyJSON is a public
REST service for testing

and prototyping

https://dummyjson.com/recipes
https://dummyjson.com/

3. REST services - Tools
• For more complex REST operations (e.g. POST, with custom headers,

body, etc.) we can use for instance:
− Postman (desktop app): https://www.postman.com/

Mobile Applications - 5. Using web services in Android 18

https://www.postman.com/

Table of contents
1. Introduction
2. HTTP
3. REST services
4. REST clients in Android

− Retrofit

5. Cloud functions
6. Takeaways

Mobile Applications - 5. Using web services in Android 19

4. REST clients in Android
• Implementing a REST client in an Android app using Kotlin and

Jetpack Compose involves several steps
− Grant connectivity permissions to our app

− Set up dependencies for networking and JSON parsing
− Define data models for the API (request/response)
− Use a REST client (e.g., Retrofit) to interact with the REST API
− Use a coroutine-based approach for asynchronous network calls (in

ViewModel)
− Display the data in a Compose UI

Mobile Applications - 5. Using web services in Android 20

<uses-permission android:name="android.permission.INTERNET" />

To be included in
the manifest

4. REST clients in Android - Retrofit
• There are different high-level specific libraries implementing REST

clients in Java/Kotlin, such as:
− Retrofit: https://square.github.io/retrofit/
− Jersey: https://eclipse-ee4j.github.io/jersey/
− RESTEasy: https://resteasy.dev/
− OkHttp: https://square.github.io/okhttp/

• For the following examples, we use Retrofit. For that, first we need to
include the following dependencies:

Mobile Applications - 5. Using web services in Android 21

build.gradle.kts (app) libs.version.toml

implementation(libs.retrofit)
implementation(libs.converter.gson)

[versions]
retrofit = "2.11.0"
converterGson = "2.11.0"

[libraries]
retrofit = { module = "com.squareup.retrofit2:retrofit", version.ref = "retrofit" }
converter-gson = { module = "com.squareup.retrofit2:converter-gson", version.ref =
"converterGson" }

https://square.github.io/retrofit/
https://eclipse-ee4j.github.io/jersey/
https://resteasy.dev/
https://square.github.io/okhttp/

4. REST clients in Android - Retrofit
• The following sample app makes GET and POST requests to the REST

service DummyJSON using Retrofit

Mobile Applications - 5. Using web services in Android 22

https://dummyjson.com/docs/todos#todos-all https://dummyjson.com/docs/recipes#recipes-add

https://dummyjson.com/
https://github.com/bonigarcia/android-examples/tree/main/RestClient
https://dummyjson.com/docs/todos#todos-all
https://dummyjson.com/docs/recipes#recipes-add

4. REST clients in Android - Retrofit

Mobile Applications - 5. Using web services in Android 23

object DummyJsonClient {
private const val BASE_URL = "https://dummyjson.com/"

val apiService: DummyJsonService by lazy {
Retrofit.Builder()

.baseUrl(BASE_URL)

.addConverterFactory(GsonConverterFactory.create())

.build()

.create(DummyJsonService::class.java)
}

}

data class Todos(
val todos: List<Todo>,
val total: Long,
val skip: Long,
val limit: Long,

)

data class Todo(
val id: Long,
val todo: String,
val completed: Boolean,
val userId: Long,

)

data class Recipe(
val id: Long? = null,
val name: String,
val ingredients: String,

)

interface DummyJsonService {

@GET("todos")
suspend fun getTodos(): Response<Todos>

@POST("recipes/add")
suspend fun addRecipes(@Body recipe: Recipe): Response<Recipe>

}

Data model. It can be automatically generated
from the JSON using an online tool like:
https://transform.tools/json-to-kotlin

We create an instance of
the previous interface

like this

We need to define an
interface for each

endpoint we want to use
(without the base URL)

https://github.com/bonigarcia/android-examples/tree/main/RestClient
https://transform.tools/json-to-kotlin

4. REST clients in Android - Retrofit

Mobile Applications - 5. Using web services in Android 24

class RestViewModel : ViewModel() {

// ...

fun fetchTodos() {
viewModelScope.launch {

_isLoading.value = true
try {

val response = DummyJsonClient.apiService.getTodos()
if (response.isSuccessful) {

_todos.value = response.body()?.todos!!
}

} catch (e: Exception) {
_toastMessage.value = e.message

} finally {
_isLoading.value = false

}
}

}

fun addRecipe(recipe: Recipe) {
viewModelScope.launch {

try {
val response = DummyJsonClient.apiService.addRecipes(recipe)
_toastMessage.value = response.code().toString() + " " + response.message()

} catch (e: Exception) {
_toastMessage.value = e.message

}
}

}

}

We use the previous API
service from a
ViewMovel

https://github.com/bonigarcia/android-examples/tree/main/RestClient

4. REST clients in Android - Retrofit

Mobile Applications - 5. Using web services in Android 25

@Composable
fun UserListScreen(viewModel: RestViewModel = viewModel()) {

val context = LocalContext.current
val todos by viewModel.todos.collectAsState()
val isLoading by viewModel.isLoading.collectAsState()
var showDialog by remember { mutableStateOf(false) }
val toastMessage by viewModel.toastMessage.collectAsState()

Scaffold(
floatingActionButton = {

FloatingActionButton(onClick = { showDialog = true }) {
Icon(Icons.Default.Add, contentDescription = stringResource(R.string.add))

}
}) { padding ->
Column(

modifier = Modifier
.fillMaxSize()
.padding(padding),

horizontalAlignment = Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center

) {
if (isLoading) {

CircularProgressIndicator()
} else {

LazyColumn {
items(todos) { todo ->

TodoItem(todo = todo)
}

}
}

}

// ...
}

}

Finally, we observe the changed
in the ViewModel and display

the responses in the UI

https://github.com/bonigarcia/android-examples/tree/main/RestClient

Table of contents
1. Introduction
2. HTTP
3. REST services
4. REST clients in Android
5. Cloud functions

− Node.js
− Hello world

6. Takeaways

Mobile Applications - 5. Using web services in Android 26

5. Cloud functions
• Cloud Functions is a serverless framework provided by Firebase to

run backend code in response to events triggered by background
events, such as HTTP requests
− Serverless is a cloud computing model where cloud providers (such as GCP)

manage the infrastructure needed to execute code, allowing developers to
focus solely on writing and deploying functions or blocks of code

• We can use JavaScript, TypeScript or Python code to implement Cloud
Functions
− In this course, we implement the server-side logic of a REST service using a

basic Cloud Function with JavaScript

Mobile Applications - 5. Using web services in Android 27

https://firebase.google.com/docs/functions/

https://firebase.google.com/docs/functions/

5. Cloud functions - Node.js
• Node.js is an open-source, cross-platform JavaScript runtime

environment that enables the execution of JavaScript code outside a
web browser

• Node.js runs on the V8 JavaScript engine
− V8 is an open-source JavaScript engine developed by the Chromium Project

Mobile Applications - 5. Using web services in Android 28

N
od

e
m

od
ul

e

N
od

e
m

od
ul

e

N
od

e
m

od
ul

e

N
od

e
m

od
ul

e

N
od

e
m

od
ul

e

Platform
Infrastructure

Computer

Operating System

Node.js

https://nodejs.org/

We can see Node.js as a
software layer that allows to

execute JavaScript apps

https://nodejs.org/

5. Cloud functions - Node.js
• We can download the Node.js installer from its website:

Mobile Applications - 5. Using web services in Android 29

https://nodejs.org/

https://nodejs.org/

5. Cloud functions - Node.js
• NPM is a package manager for Node.js packages (called Node modules)

− It consists of a command line client (npm), and an online database of public and
private packages, called the npm registry

• The NPM command line program is available after installing Node.js

Mobile Applications - 5. Using web services in Android 30

https://www.npmjs.com/

> node --version
v20.11.1

> npm --version
10.5.0

https://www.npmjs.com/

5. Cloud functions - Hello world
• The procedure to create a cloud function is the following:

1. Create a Firebase project
• We already have Firebase projects in this course (uc3m-it-2025-16504-g**-lab)

2. Set up Firebase CLI (Command Line Interface)
• It is a command line tool provided by Google for interacting with Firebase services

3. Login in Firebase
4. Initialize project
5. Implement the cloud function

• For instance, using in JavaScript
6. Emulate the cloud function locally
7. Deploy to Firebase

Mobile Applications - 5. Using web services in Android 31

https://firebase.google.com/docs/functions/get-started

https://firebase.google.com/docs/functions/get-started

5. Cloud functions - Hello world
2. Set up Firebase CLI:

3. Login in Firebase:

Mobile Applications - 5. Using web services in Android 32

> npm install -g firebase-tools

changed 644 packages in 27s

> firebase --version
13.33.0

We use npm to install Firebase
CLI

> firebase login
i Firebase optionally collects CLI and Emulator Suite usage and error reporting information to help improve our products. Data
is collected in accordance with Google's privacy policy (https://policies.google.com/privacy) and is not used to identify you.

? Allow Firebase to collect CLI and Emulator Suite usage and error reporting information? No

Visit this URL on this device to log in:
https://accounts.google.com/o/oauth2/auth?client_id=563584335869-fgrhgmd47bqnekij5i8b5pr03ho849e6.apps.googleusercontent.com&...

Waiting for authentication...

+ Success! Logged in as bogarcia@it.uc3m.es

5. Cloud functions - Hello world
3. Login in Firebase:

Mobile Applications - 5. Using web services in Android 33

5. Cloud functions - Hello world

Mobile Applications - 5. Using web services in Android 34

C:\Users\boni\Documents\dev\cloud-functions-hello-world>firebase init functions

######## #### ######## ######## ######## ### ###### ########
##
######
##
########

You're about to initialize a Firebase project in this directory:

C:\Users\boni\Documents\dev\cloud-functions-hello-world

? Are you ready to proceed? Yes

=== Project Setup

First, let's associate this project directory with a Firebase project.
You can create multiple project aliases by running firebase use --add,
but for now we'll just set up a default project.

? Please select an option: Use an existing project
? Select a default Firebase project for this directory:
> uc3m-it-2024-13345-professors (uc3m-it-2025-16504-professors)
uc3m-it-2024-16504-professors (uc3m-it-2024-16504-professors)

4. Initialize project:

5. Cloud functions - Hello world

Mobile Applications - 5. Using web services in Android 35

4. Initialize project:
=== Functions Setup
Let's create a new codebase for your functions.
A directory corresponding to the codebase will be created in your project
with sample code pre-configured.

See https://firebase.google.com/docs/functions/organize-functions for
more information on organizing your functions using codebases.

Functions can be deployed with firebase deploy.

? What language would you like to use to write Cloud Functions? (Use arrow keys)
> JavaScript
TypeScript
Python

? Do you want to use ESLint to catch probable bugs and enforce style? No
+ Wrote functions/package.json
+ Wrote functions/index.js
+ Wrote functions/.gitignore
? Do you want to install dependencies with npm now? Yes

added 530 packages, and audited 531 packages in 32s

i Writing configuration info to firebase.json...
i Writing project information to .firebaserc...
i Writing gitignore file to .gitignore...

+ Firebase initialization complete!

5. Cloud functions - Hello world

Mobile Applications - 5. Using web services in Android 36

5. Implement the cloud function:
− You can find a complete project example in GitHub:

https://github.com/bonigarcia/cloud-functions-hello-world
const functions = require("firebase-functions");
const admin = require("firebase-admin");
const express = require("express");

admin.initializeApp();

const logger = functions.logger;
const app = express();
const db = admin.firestore();

// Hello world endpoint (GET)
app.get("/hello-world", (req, res) => {

logger.log("Hello world received");
return res.status(200).send("Hello world!");

});

// ...

exports.app = functions.https.onRequest(app);

https://github.com/bonigarcia/cloud-functions-hello-world
https://github.com/bonigarcia/cloud-functions-hello-world

5. Cloud functions - Hello world

Mobile Applications - 5. Using web services in Android 37

6. Emulate the cloud function locally:
> firebase emulators:start
i emulators: Starting emulators: functions, firestore
i firestore: Firestore Emulator logging to firestore-debug.log
+ firestore: Firestore Emulator UI websocket is running on 9150.
i ui: Emulator UI logging to ui-debug.log
i functions: Watching "C:\Users\boni\Documents\dev\cloud-functions-hello-
world\functions" for Cloud Functions...
+ functions: Using node@20 from host.
Serving at port 8490

+ functions: Loaded functions definitions from source: app.
+ functions[us-central1-app]: http function initialized
(http://127.0.0.1:5001/uc3m-it-2025-13345-professors/us-central1/app).

┌───┐
│ ✔ All emulators ready! It is now safe to connect your app. │
│ i View Emulator UI at http://127.0.0.1:4000/ │
└───┘

┌───────────┬────────────────┬─────────────────────────────────┐
│ Emulator │ Host:Port │ View in Emulator UI │
├───────────┼────────────────┼─────────────────────────────────┤
│ Functions │ 127.0.0.1:5001 │ http://127.0.0.1:4000/functions │
├───────────┼────────────────┼─────────────────────────────────┤
│ Firestore │ 127.0.0.1:8080 │ http://127.0.0.1:4000/firestore │
└───────────┴────────────────┴─────────────────────────────────┘

7. Deploy to Firebase:

5. Cloud functions - Hello world

Mobile Applications - 5. Using web services in Android 38

> firebase deploy --only functions

=== Deploying to 'uc3m-it-2024-13345-professors'...

i deploying functions
i functions: preparing codebase default for deployment
i functions: ensuring required API cloudfunctions.googleapis.com is enabled...
i functions: ensuring required API cloudbuild.googleapis.com is enabled...
i artifactregistry: ensuring required API artifactregistry.googleapis.com is enabled...
+ artifactregistry: required API artifactregistry.googleapis.com is enabled
+ functions: required API cloudbuild.googleapis.com is enabled
+ functions: required API cloudfunctions.googleapis.com is enabled
i functions: Loading and analyzing source code for codebase default to determine what to deploy
Serving at port 8497

i functions: preparing functions directory for uploading...
i functions: packaged C:\Users\boni\Documents\dev\cloud-functions-hello-world\functions (66.84 KB) for uploading
+ functions: functions folder uploaded successfully
i functions: creating Node.js 20 (1st Gen) function app(us-central1)...
+ functions[app(us-central1)] Successful create operation.
Function URL (app(us-central1)): https://us-central1-uc3m-it-2024-13345-professors.cloudfunctions.net/app
i functions: cleaning up build files...

+ Deploy complete!

Project Console: https://console.firebase.google.com/project/uc3m-it-2025-13345-professors/overview

Table of contents
1. Introduction
2. HTTP
3. REST services
4. REST clients in Android
5. Cloud functions
6. Takeaways

Mobile Applications - 5. Using web services in Android 39

6. Takeaways
• A web service is a distributed software system designed to allow

different software to interact built on the top of HTTP
• REST is a popular architectural style for implementing web services
• JSON is a lightweight data-interchange format very popular for data

exchange in REST services
• We can implement a REST client in an Android app using an existing

library such as Retrofit
• Cloud Functions is a serverless framework provided by Firebase that

allows us to implement REST services in an easy way

Mobile Applications - 5. Using web services in Android 40

	Mobile Applications
	Table of contents
	1. Introduction
	1. Introduction
	Table of contents
	2. HTTP
	2. HTTP
	2. HTTP
	2. HTTP
	Table of contents
	3. REST services
	3. REST services
	3. REST services
	3. REST services
	3. REST services - JSON
	3. REST services - JSON
	3. REST services - Tools
	3. REST services - Tools
	Table of contents
	4. REST clients in Android
	4. REST clients in Android - Retrofit
	4. REST clients in Android - Retrofit
	4. REST clients in Android - Retrofit
	4. REST clients in Android - Retrofit
	4. REST clients in Android - Retrofit
	Table of contents
	5. Cloud functions
	5. Cloud functions - Node.js
	5. Cloud functions - Node.js
	5. Cloud functions - Node.js
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	Table of contents
	6. Takeaways

