Mobile Applications

5. Using web services in Android

Boni Garcia

boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

vcadm | Universidad Carlos lll de Madrid
Q100

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Mobile Applications - 5. Using web services in Android

Table of contents

Introduction

HTTP

REST services

REST clients in Android
Cloud functions

o Uk wh e

Takeaways

Mobile Applications - 5. Using web services in Android

1. Introduction

* Web applications:
— Provides a service to end users:

CCe
s (o]]

A [)

J - -

|

Browser (web client)

HTML, CSS, JavaScript
HTTP

* Web services (sometimes called web APIs):
— Provides a service to other programs:

o i ==
|

App (service client)

JSON, YAML, XML
HTTP

<]

Web server

Web server (service
provider)

Mobile Applications - 5. Using web services in Android

1. Introduction

* A web service is a distributed service that built on the top of HTTP

* Instead of sharing regular web resources (e.g., HTML documents),
web services transfers data into machine-readable file formats such

as JSON, YAML, or XML

* Web services provide an Application Programming Interface (API) for
sharing resources (e.g. some data into a database) used for example

by another by some software app (e.g., mobile app, a desktop app, or
another server)

* There are different types of web services, such as SOAP or REST
— We focus only in REST in this course, since it is widespread nowadays

Mobile Applications - 5. Using web services in Android

Table of contents

2. HTTP

Mobile Applications - 5. Using web services in Android

2. HTTP

 HTTP (Hypertext Transfer Protocol) is an application layer protocol in
the Internet reference model for transmitting hypermedia documents
(i.e., web pages)

e HTTP is based on a client-server architecture:

c. c i HTTP request HTTP
i o HTTP response TCP
\/, /u.|.\‘\~*\§ I P

End users use browser to
navigate the Web
(consuming web
applications)

Mobile Applications - 5. Using web services in Android

2. HTTP

e HTTP messages can be:
- Request (from clients)
— Responses (from servers)

 HTTP defines methods (sometimes referred to as verbs) to indicate
the desired action to be performed on the identified resource

— Common methods: GET (for reading), POST (for sending data)

* HTTP headers are a list of strings sent and received in request and
response
— Headers include extra information about the communication

* HTTP response status codes indicate whether a specific HTTP request
has been successfully completed
— Common examples: 200 Ok, 404 not found, 500 internal server error

Mobile Applications - 5. Using web services in Android

2. HTTP

* Example of request-response:

Request line {

Headers

Empty line {

HTTP request

|

GET /index.html HTTP/1.1
Host: www.example.com
User—-Agent: Mozilla/4.0

Accept:

text/html, image/gif,

image/jpeg

Response line {

Headers -

Empty line {

Body =

—

—

HTTP response

. 4

HTTP/1.1 200 OK
Date: Tue, 31 Dec 2023 23:59:59 GMT
Server: Apache/2.0.54 (Fedora)

Content-Type: text/html
Last-Modified: Mon, 30 Dec 2023
Content-Length: 1221

<html>
<body>
<hl>Example page</hl>

</body>
</html>

Mobile Applications - 5. Using web services in Android

2. HTTP

 HTTPS (Hypertext Transfer Protocol Secure) is the secure version of
HTTP

- With HTTPS it is achieved that sensitive information (passwords, etc.) cannot
be intercepted by an attacker, since the only thing he will obtain will be an
encrypted data stream that will be impossible for him/her to decrypt

e TLS (Transport Layer Security) is a protocol that provides encryption
over TCP connections

HTTPS
TLS
TCP

Mobile Applications - 5. Using web services in Android

Table of contents

3. REST services
— JSON
— Tools

Mobile Applications - 5. Using web services in Android

3. REST services

* REST (REpresentational State Transfer) is an architectural style for
designing distributed services

— REST is a very popular way for creating web services

e REST is built on top of HTTP, and therefore, it follows a client-server
architecture

- The service server handles a set of resources, listening for incoming requests
made by clients

— Each resource is identified uniquely using URLs known as endpoints

— Each resource has a representation, which is a machine-readable explanation
of the current state of a resource. We use a data-interchange format for
defining representations, such as JSON, YAML, or XML

Mobile Applications - 5. Using web services in Android

3. REST services

* We can use the HTTP methods (the so-called verbs) to map REST

actions
- The following table summarizes the HTTP methods used to create REST
services:
HTTP Method Description
_ (| GET Read a resource
Most important
methods (to implement POST Send a new resource to the server
_ <
CRUD operations) PUT Update a resource
_ | DELETE Eliminate a resource
PATCH Update partially a resource
HEAD Ask if a given resource exists without
returning any of its representations
OPTIONS Retrieve the available verbs for a
given resource

Mobile Applications - 5. Using web services in Android

3. REST services

* Finally, we use the
HTTP status codes to
identify the response
associated with REST
actions

The following table
summarizes the typical
HTTP status code
reused in REST

Status Code

200

201

204

301
400

401

403

404
405

500

OK

Created

No content

Moved permanently

Bad request

Unauthorized

Forbidden

Not found
Method not allowed

Internal server error

Description

The request was successful, and the content requested was
returned (e.g., in a GET request)

The resource was created (e.g., in a POST or PUT request)

The action was successful, but no content was returned. This
status code is useful in actions that do not require a response
body (e.g., in a DELETE request)

The resource was moved to another location

The request has some problems (e.g., missing parameters)

The requested resource is not accessible for the user that made
the request

The resource is not accessible, but unlike 401, authentication will
not affect the response

The provided endpoint does not identify any resource

The used verb is not allowed (e.g., when using PUT in a read-only
resource)

Generic unexpected condition in the server-side

Mobile Applications - 5. Using web services in Android

Client Server
POST /user

3. REST services

* The following figure shows a Create{ T E—
sequence of requests and responses 107 3, e e o
of an example REST service that uses ; nsne] i ey
different HTTP methods and Update < . 201 Created

{"id": 1, "name": "bob", "surname": "roe"}
d N
response codes PATCH /user/1
-~ {"name”: "joe"}
Partial 201 Created
update {"id": 1, "name": "joe", "surname": "roe"}

GET /user/1

Retrieve < 200 OK
{"id": 1, "name": "joe", "surname": "roe"}
M
~ DELETE /user/1
Create < 204 No content
.
GET /users
Retrieve < 200 OK

(]

Mobile Applications - 5. Using web services in Android

3. REST services - JSON

e JSON (JavaScript Object Notation) is a lightweight data-interchange

format

- |t is one of the most popular data
formats for web services nowadays

— The JSON format has been defined
as an open standard

- Example of JSON:

{

"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 27,
"address": {

"streetAddress": "21 2nd Street",

"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

}

3

honeNumbers": [

{
"type": "home",
"number": "212 555-1234"

s

{
"type": "office",
"number": "646 555-4567"
}

1,

"children": [

"Catherine",

"Thomas",

"Trevor"

1,

"spouse": null

Mobile Applications - 5. Using web services in Android

3. REST services - JSON

 JSON data can be:

— A collection of name/value pairs of objects
* An object begins with the symbol { and ends with }
* The name and value are separated by a colon (:)

— An ordered list of values:
 Alist begins with the symbol [and ends with]

« Acomma (,) is used to separate the elements in a list

— Values can be strings enclosed in double quotes (
values (true or false), or null

O

), numbers, boolean

https://www.json.org/

https://www.json.org/

Mobile Applications - 5. Using web services in Android

3. REST services - Tools

 We can use different tools to interact with REST services

* To making GET requests, we can use directly a web browser
— For instance: https://dummyjson.com/recipes

~ @ dummyjson.com/racipes x + - (m} X

o DummyJSON is a public
<] 25 dummyjson.com/recipes e (] ; . 0
REST service for testing

{"recipes”:[{"id":1,"name":"Classic Margherita Pizza","ingredients":["Pizza dough","Tomato sauce”,"Fresh mozzarella cheese”,"Fresh basil leaves","

live =
lpil”,"salt and pepper to taste"],"instructions”:["Preheat the oven to 475°F (245°C).","Roll out the pirza dough and spread tomato sauce evenly."”,"Top with slices a nd prototypl ng

of fresh mozzarella and fresh basil leaves."”,"Drizzle with olive oil and season with salt and pepper.”,"Bake in the preheated oven for 12-15 minutes or until the J|
crust is golden brown.","Slice and serve
hot."],"prepTimeMinutes": 2@, "cookTimeMinutes™:15, "servings":4, "difficulty”: "Easy”,"cuisine":"Italian","caloriesPerServing™:300, "tags":

["Pizza","Italian"], "userId™:166,"image

"https://cdn.dummyjson.com/recipe-images/1.webp”, "rating”:4.6, "reviewCount™: 98, "mealType™ : ["Dinner"]}

1"id":2, "name":"Vegetarian Stir-Fry" ngredients”:["Tofu, cubed”,"Broccoli florets","Carrots, sliced”,"Bell peppers, sliced”,"Soy sauce™,"Ginger,
minced"”,"Garlic, minced","Sesame o0il","Cooked rice for serving"],"instructions”:["In a wok, heat sesame oil over medium-high heat."”,"Add minced ginger and

sauté until fragrant.”,"Add cubed tofu and stir-fry until golden brown.”,”Add broccoli, carrots, and bell peppers. Cook until vegetables are tender-
"Pour soy sauce over the stir-fry and toss to combine.","Serve over cooked

s "prepTimeMinutes™:15, "cookTimeMinutes™: 20, "servings™: 3, "difficulty”: "Medium”,"cuisine™: "Asian", "caloriesPerserving™:25@, "tags":["vegetarian™, "Stir-
fry","Asian"],"userId":143,"image": "https://cdn.dummyjson.com/recipe-images/2.webp”,"rating”:4.7, "reviewCount™:26,"mealType”:["Lunch"]},{"id":3, "name": "Chocolate
IChip Cookies”,"ingredients™:["All-purpose flour","Butter, softened”,"Brown sugar”,"White sugar”,"Eggs”,"vanilla extract”,”Baking soda","salt","Chocolate

ichips"], "instructions”:["Preheat the oven to 35@°F (175°C).","In a bowl, cream together softened butter, brown sugar, and white sugar.”,"Best in eggs one at a
itime, then stir in vanilla extract.","Combine flour, baking soda, and salt. Gradually add to the wet ingredients."”,"Fold in chocolate chips.","Drop rounded
itablespoons of dough onto ungreased baking sheets.”,"Bake for 18-12 minutes or until edges are golden brown.","Allow cockies to cool on the baking sheet for a
[few minutes before transferring to a wire

rack. "], "prepTimeMinutes™:15, "cookTimeMinutes™ 10, "servings™: 24, "difficulty": "Easy","cuisine”:"American”, "caloriesPerserving”:15@, "tags™:
["Cookies","Dessert™,"Baking"], "userId”:34,"image": "https://cdn.dummyjson.com/recipe-images/3.webp”, "rating":4.9, "reviewCount™:13, "mealType":
["snack”,"Dessert™]},{"id":4, "nam: "Chicken Alfrede Pasta”,"ingredients”:["Fettuccine pasta”,"Chicken breast, sliced","Heavy cream”,"Parmesan cheese,
grated"”,"Garlic, minced”,"Butter”,"Salt and pepper to taste™,"Fresh parsley for garnish™],"instructions":["Cook fettuccine pasta according to package
instructions.”,"In a pan, sauté sliced chicken in butter until fully cooked.”,"Add minced garlic and cook until fragrant.”,"Pour in heavy cream and grated
Parmesan cheese. Stir until the cheese is melted.”,"Season with salt and pepper to taste.”,"Combine the Alfredo sauce with cooked pasta.”,"Garnish with fresh
parsley before serving."],"prepTimeMinutes”:15,"cockTimeMinutes":2@,"servings":4,"difficulty": "Medium”, "cuisine":"Italian", "caloriesPerServing”:508,"tags":
["Pasta”,"Chicken"],"userId”:136,"image": "https://cdn.dummyjson.com/recipe-images/4.webp”, "rating”:4.9, "reviewCount": 82, "mealType™: ["Lunch", "Dinner"]},
1"id":5,"name":"Mango Salsa Chicken","ingredients”:["Chicken thighs","Mango, diced","Red onion, finely chopped”,"Cilantro, chopped”,”Lime juice","Jalapefio,
minced”,"salt and pepper to taste”,"Cooked rice for serving™],"instructions”:["Season chicken thighs with salt and pepper.”,"Grill or bake chicken until fully
cooked.”,"In a bowl, combine diced mango, chopped red onion, cilantro, minced jalapefio, and lime juice.","Dice the cocked chicken and mix it with the mango
salsa."”,"Serve over cooked

rice."], "prepTimeMinutes”:15, "cookTimeMinutes™: 25, " servings™: 3, "difficulty”: "Easy"”, "cuisine”:"Mexican™, "caloriesPersServing™:380, "tags":

["Chicken","Salsa"], "userId":26, "image": "https://cdn.dummyjson.com/recipe-images/5.webp™, "rating”:4.9, " reviewCount” 163, "mealType”: ["Dinner"]},
H"id":6,"name":"Quinoa Salad with Avocado”,"ingredients”:["Quinoa, cooked”,"Avocado, diced”,"Cherry tomatoes, halved","Cucumber, diced”,"Red bell pepper,
diced","Feta cheese, crumbled","Lemon vinaigrette dressing","Salt and pepper to taste"],"instructions™:["In a large bowl, combine cooked gquinoa, diced avecado,
halved cherry tomatoes, diced cucumber, diced red bell pepper, and crumbled feta cheese.”,"Drizzle with lemon vinaigrette dressing and toss to combine.”,"Season
with salt and pepper to taste.”,"Chill in the refrigerator before
serving.”],"prepTimeMinutes™: 28, "cookTimeMinutes" :15,"servings™:4, "difficulty”: "Easy”, "cuisine™: "Mediterranean”, "caloriesPerserving”:28@, "tags":
["Salad"”,"Quinoa"], "userId™:197, "image": "https://cdn.dummyjson.com/recipe-images/6.webp™, "rating”:4.4, "reviewCount™ :59, "mealType™: ["Lunch”,"Side Dish"]},

M id":7 ":"Tomato Basil Bruschetta”,"ingredients”:["Baguette, sliced”,"Tomatoes, diced”,”Fresh basil, chopped”,"Garlic cloves, minced","Balsamic
glaze”,"0live 0il","salt and pepper to taste"],"instructions™:["Preheat the oven to 375°F (199°C).","Place bagustte slices on & baking shest and toast in the
oven until golden brown.","In a bowl, combine diced tomatoes, chopped fresh basil, minced garlic, and a drizzle of olive o0il.","Season with salt and pepper to
taste."."Top each toasted basuette slice with the tomato-basil mixture. Drizzle with halsamic slaze hefore

https://dummyjson.com/recipes
https://dummyjson.com/

Mobile Applications - 5. Using web services in Android

3. REST services - Tools

* For more complex REST operations (e.g. POST, with custom headers,
body, etc.) we can use for instance:
— Postman (desktop app): https://www.postman.com/

Wi p Q s &2 & signin
onment ~ &
i = = hupsifjsonplaceholder. typicode.com/posts [save ~ 95
” el bl m
oL
N —) Cookies
[=) o 3|
et
| A1 VALUE DESCRIPTION Bulk Edit
Jnb
=
K Se e any col
I group rel
:
Create Collection
C -
&%)
Bl

https://www.postman.com/

Mobile Applications - 5. Using web services in Android

Table of contents

4. REST clients in Android
— Retrofit

Mobile Applications - 5. Using web services in Android

4. REST clients in Android

* Implementing a REST client in an Android app using Kotlin and
Jetpack Compose involves several steps

— Grant connectivity permissions to our app

To be included in
the manifest

<uses-permission android:name="android.permission.INTERNET" /> J

- Set up dependencies for networking and JSON parsing
— Define data models for the API (request/response)
— Use a REST client (e.g., Retrofit) to interact with the REST API

- Use a coroutine-based approach for asynchronous network calls (in
ViewModel)

— Display the data in a Compose Ul

Mobile Applications - 5. Using web services in Android

4. REST clients in Android - Retrofit

* There are different high-level specific libraries implementing REST
clients in Java/Kotlin, such as:
— Retrofit: https://square.github.io/retrofit/
— Jersey: https://eclipse-eedj.github.io/jersey/
— RESTEasy: https://resteasy.dev/
— OkHttp: https://square.github.io/okhttp/

* For the following examples, we use Retrofit. For that, first we need to
include the following dependencies:

build.gradle.kts (app) libs.version.toml

implementation(Llibs.retrofit) [versions]
implementation(Libs.converter.gson) retrofit = "2.11.6

. converterGson = "2.11.0"
implementation(libs.kotlinx.coroutines.android) kotlinxCoroutinesAndroid = "1.7.3"

[libraries]

retrofit = { module = "com.squareup.retrofit2:retrofit”, version.ref = "retrofit" }
converter-gson = { module = "com.squareup.retrofit2:converter-gson", version.ref =

"converterGson" }

kotlinx-coroutines-android = { module = "org.jetbrains.kotlinx:kotlinx-coroutines-

android", version.ref = "kotlinxCoroutinesAndroid" }

https://square.github.io/retrofit/
https://eclipse-ee4j.github.io/jersey/
https://resteasy.dev/
https://square.github.io/okhttp/

Mobile Applications - 5. Using web services in Android

4. REST clients in Android - Retrofit

* The following sample app makes GET and POST requests to the REST
service DummyJSON using Retrofit

~ @ Recipes - DummyISON - Free F X 4+ = O *
<« (& 2% dummyjson.com/docs/recipes#recipes-add b+ 4 3 ;
-
~ @ Todos - DummyJSON - Free Fa. X + — O * Du mmyJSON = |
o= : q q 1 P
(] 2% dummyjson.com/docs/todos#todos-all ¢] °

a Add Recipe #

DummyJSON = '

Q) Adding a recipe will not add it into the server.
* It will simulate a POST request and will return a new created recipe with a new id

Get all todos #

By default you will get 30 items, use Limit and skip to paginate through all items.

[Show Output] ‘

| |
Show Output ‘
v

https://dummyjson.com/docs/todos#todos-all https://dummyjson.com/docs/recipes#recipes-add

https://dummyjson.com/
https://github.com/bonigarcia/android-examples/tree/main/RestClient
https://dummyjson.com/docs/todos#todos-all
https://dummyjson.com/docs/recipes#recipes-add

Mobile Applications - 5. Using web services in Android

N % \\\
e [} [} [} 5 ~
\‘\Qe A
4. REST clients in Android - Retrofit
data class Todos(interface DummyJsonService { .
val todos: List<Todo>, We need to deflne an
val total: Long, @GET("todos") interface for each
val skip: Long, suspend fun getTodos(): Response<Todos>

val limit: Long,
) @POST("recipes/add")

suspend fun addRecipes(@Body recipe: Recipe): Response<Recipe>

data class Todo(
val id: Long, }
val todo: String,
val completed: Boolean,
val userlId: Long,

)

data class Recipe(
val id: Long? = null,
val name: String,
val ingredients: String,

Data model. It can be automatically generated
from the JSON using an online tool like:
https://transform.tools/json-to-kotlin

endpoint we want to use
(without the base URL)

object DummyJsonClient {
private const val BASE_URL = "https://dummyjson.com/"

val apiService: DummyJsonService by Llazy {
Retrofit.Builder()
.baseUrl(BASE_URL)
.addConverterFactory(GsonConverterFactory.create())
.build()
.create(DummyJsonService::class.java)

We create an instance of
the previous interface
like this

https://github.com/bonigarcia/android-examples/tree/main/RestClient
https://transform.tools/json-to-kotlin

Mobile Applications - 5. Using web services in Android

\‘ % \\\
[] [] [] [] 5 N
\\\@o \\\
4. REST clients in Android - Retrofit
\\\ ff& \\
. . (/6 R\
class RestViewModel : ViewModel() { %
/..] \‘\\
We use the previous API \
fun fetchTodos() { .
viewModelScope. launch { service from da
_isloading.value = true :
Ty o ViewMovel

val response = DummyJsonClient.apiService.getTodos()
if (response.isSuccessful) {
_todos.value = response.body()?.todos!!
¥
} catch (e: Exception) {
_toastMessage.value = e.message
} finally {
_isloading.value = false

}
}

fun addRecipe(recipe: Recipe) {
viewModelScope. lLaunch {
try {
val response = DummyJsonClient.apiService.addRecipes(recipe)
_toastMessage.value = response.code().toString() + " " + response.message()
} catch (e: Exception) {
_toastMessage.value = e.message

}

https://github.com/bonigarcia/android-examples/tree/main/RestClient

Mobile Applications - 5. Using web services in Android

] ° ° ° ‘\?\’:f \‘\\
4. REST clients in Android - Retrofit
@Composable) \\\4:%\\\
fun UserListScreen(viewModel: RestViewModel = viewModel()) { ‘\\<5 &

val context = LocalContext.current

val todos by viewModel.todos.collectAsState()

val isloading by viewModel.islLoading.collectAsState()
var showDialog by remember { mutableStateOf(false) } 1. Do something nice for someone you care about
val toastMessage by viewModel.toastMessage.collectAsState()

Sca-F-Fold(2. Memorize a poem
floatingActionButton = {
FloatingActionButton(onClick = { showDialog = true }) {

3. Watch a classi
Icon(Icons.Default.Add, contentDescription = stringResource(R.string.add)) sena s mone

}
}) { padding -> 4. Watch a documentary
Column(‘
modifier = Modifier
fl LLMaxSize () 5. Invest in cryptocurrency
.padding(padding),

horizontalAlignment = Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center

6. Contribute code or a monetary donation to an
open-source software project

) A
if (isLoading) { Xg\\\\\\\\\\\
CircularProgressIndicator() 7. Solve a Rubik's cube

} else {
LazyColumn { 1
items(todos) { todo -> F.Ina”y’ Vv.e Observe the Ch.anged 8. Bake pastries for yourself and neighbor
} TodoTtem(todo = todo) in the ViewModel and display
} the responses in the UI 9. Go see a Broadway production
}
} 10. Write a thank you letter to an influential pers +

your life

// ...

https://github.com/bonigarcia/android-examples/tree/main/RestClient

Mobile Applications - 5. Using web services in Android

Table of contents

5. Cloud functions
- Node.js
- Hello world

Mobile Applications - 5. Using web services in Android

5. Cloud functions

* Cloud Functions is a serverless framework provided by Firebase to
run backend code in response to events triggered by background
events, such as HTTP requests

— Serverless is a cloud computing model where cloud providers (such as GCP)
manage the infrastructure needed to execute code, allowing developers to
focus solely on writing and deploying functions or blocks of code

* We can use JavaScript, TypeScript or Python code to implement Cloud
Functions

— In this course, we see a very basic Cloud Function example implemented in
JavaScript

https://firebase.google.com/docs/functions/

https://firebase.google.com/docs/functions/

Mobile Applications - 5. Using web services in Android

5. Cloud functions - Node.js

* Node.js is an open-source, cross-platform JavaScript runtime
environment that enables the execution of JavaScript code outside a

web browser

* Node.js runs on the V8 JavaScript engine
- V8 is an open-source JavaScript engine developed by the Chromium Project

Node module
Node module

<
S
)
o
=
@
°
o)
pd

Node module
Node module

We can see Node.js as a
n r - d c ﬁc;' software layer that allows to
J one> execute JavaScript apps
https://nodejs.org/ Operating System

Infrastructure

Platform

https://nodejs.org/

Mobile Applications - 5. Using web services in Android

5. Cloud functions - Node.js

* We can download the Node.js installer from its website:

~ @ Nodejs — Run JavaScript Ever. X arF - O x
<« c 23 nodejs.org/en Y) a ;
n;’de' 3 Learn About Download Blog Docs Certification Q, Sstart typing... & b Q

Run JavaScript
Everywhere

Node.js® is a free, open-source, cross-platform
JavaScript runtime environment that lets
developers create servers, web apps, command
line tools and scripts.

Download Node.js (LTS) &

Downloads Node.js v20.11.1" with long-term support
Node.js can also be installed via package managers JavaScript @ copyto clipboard

Want new features sooner? Get Node.js v21.7.1" instead.

Learn more what Node.js is able to offer with our Learning

materials.

https://nodejs.org/

https://nodejs.org/

Mobile Applications - 5. Using web services in Android

5. Cloud functions - Node.js

* NPM is a package manager for Node.js packages (called Node modules)

— It consists of a command line client (npm), and an online database of public and
private packages, called the npm registry

% — O X
O nem b4 +
& C & npmjs.com G = w 0O ; :
¥ Nominating Presidential Muppets Pro Teams Pricing Documentation

I1|JI11 Q, search packages m Sign Up Sign In

* The NPM command line program is available after installing Node.js

> node --version
v20.11.1

> npm --version
10.5.0

https://www.npmijs.com/

https://www.npmjs.com/

Mobile Applications - 5. Using web services in Android

5. Cloud functions - Hello world

* The procedure to create a cloud function is the following:

1.

Create a Firebase project
* We already have Firebase projects in this course (uc3m-it-2025-16504-g**-lab)

Set up Firebase CLI (Command Line Interface)
* Itisa command line tool provided by Google for interacting with Firebase services

Login in Firebase

Initialize project

Implement the cloud function

* For instance, using in JavaScript
Emulate the cloud function locally
Deploy to Firebase

https://firebase.google.com/docs/functions/get-started

https://firebase.google.com/docs/functions/get-started

Mobile Applications - 5. Using web services in Android

5. Cloud functions - Hello world

2. Set up F|rebase CLI: > npm install -g firebase-tools
We use npm to install Firebase

changed 644 packages in 27s CLI

> firebase --version
13.33.0

3. Loginin Firebase:

> firebase login
i Firebase optionally collects CLI and Emulator Suite usage and error reporting information to help improve our products. Data
is collected in accordance with Google's privacy policy (https://policies.google.com/privacy) and is not used to identify you.

? Allow Firebase to collect CLI and Emulator Suite usage and error reporting information? No

Visit this URL on this device to log in:
https://accounts.google.com/o/oauth2/auth?client_i1d=563584335869-fgrhgmd47bgnekij5i8b5pr03ho849e6.apps.googleusercontent.com&...

Waiting for authentication...

+ Success! Logged in as bogarcia@it.uc3m.es

Mobile Applications - 5. Using web services in Android

5. Cloud functions - Hello world

3. Login in Firebase:

x o+

accounts.google.com/signin/oauth/consent?as=5-351735468%3A17110158044977418authuser=1&client_id=563584335869-fgrhg... ¥r) R | ;
v @ Firebase CU X o+ o %

& code=4/0AeaYSHAEtpbAINP3, hloL GBvY4ukuapOs2RecwSLOtBO1D7TNNUMECIUVo2_dIRi2.. 3¥) K | ;

<« c @ localhost:9005/?

G Sign in with Google

Woohoo!
. . .
. . Firebase CLI Login Successful
Fl re base C LI WantS tO ® See, edit, configure, and delete your ® g
Guogle Cloud data and see the email ‘You are logged in to the Firebase Command-Line
interface. You can immediately close this window and

access your Google address for your Google Account. continue using the CLI
Account View and administer all your Firebase @

data and settings

This will allow Firebase CLI to:

a bogarcia@it.uc3m.es ® View your Cloud Platform projects (0)

Make sure you trust Firebase CLI

You may be sharing sensitive info with this site or app.
Learn about how Firebase CLI will handle your data by
ng its terms of service and privacy policies.
ays see of remove access in your

You can al
Google Account.

Learn about the risks

(Cancel I (Allow))

English (United States) -

Mobile Applications - 5. Using web services in Android

5. Cloud functions - Hello world

C:\Users\boni\Documents\dev\cloud-functions-hello-world>firebase init functions
HHHHHHHE ST SHHHSEEH U SR HiH HHHHHE HHgHHEE
#H# ## ## #H ## #H# ##
HHHHHH ## #HHHSHEH SR HHHHHHHE HHHSSEHEE HHSHHE SR
#H #i# # #H#
#HHHHE #4 ## HH#HHHHE HHHHHHSEE Hi #H HHHHE HHSHHHEY
You're about to initialize a Firebase project in this directory:
C:\Users\boni\Documents\dev\cloud-functions-hello-world

? Are you ready to proceed? Yes

=== Project Setup

First, let's associate this project directory with a Firebase project.
You can create multiple project aliases by running firebase use --add,
but for now we'll just set up a default project.

Please select an option: Use an existing project

Select a default Firebase project for this directory:
uc3m-it-2024-13345-professors (uc3m-it-2025-16504-professors)
uc3m-it-2024-16504-professors (uc3m-it-2024-16504-professors)

Mobile Applications - 5. Using web services in Android

5. Cloud functions - Hello world

4. Initialize project:

=== Functions Setup

Let's create a new codebase for your functions.

A directory corresponding to the codebase will be created in your project
with sample code pre-configured.

See https://firebase.google.com/docs/functions/organize-functions for
more information on organizing your functions using codebases.

Functions can be deployed with firebase deploy.

? What language would you like to use to write Cloud Functions? (Use arrow keys)
> JavaScript

TypeScript

Python

Do you want to use ESLint to catch probable bugs and enforce style? No
Wrote functions/package.json

Wrote functions/index.js

Wrote functions/.gitignore

Do you want to install dependencies with npm now? Yes

added 530 packages, and audited 531 packages in 32s
Writing configuration info to firebase.json...
Writing project information to .firebaserc...

Writing gitignore file to .gitignore...

Firebase initialization complete!

Mobile Applications - 5. Using web services in Android

5. Cloud functions - Hello world

5. Implement the cloud function:

- You can find a complete project example in GitHub:
https://github.com/bonigarcia/cloud-functions-hello-world

const functions = require("firebase-functions");
const admin = require("firebase-admin");
const express = require("express");

admin.initializeApp();

const logger = functions.logger;
const app = express();
const db = admin.firestore();

// Hello world endpoint (GET)
app.get("/hello-world", (req, res) => {
logger.log("Hello world received");
return res.status(200).send("Hello world!");

})s
// ...

exports.app = functions.https.onRequest(app);

https://github.com/bonigarcia/cloud-functions-hello-world
https://github.com/bonigarcia/cloud-functions-hello-world

Mobile Applications - 5. Using web services in Android

5. Cloud functions - Hello world

6. Emulate the cloud function locally:

firebase emulators:start
emulators: Starting emulators: functions, firestore
firestore: Firestore Emulator logging to firestore-debug.log
firestore: Firestore Emulator UI websocket is running on 9150.
ui: Emulator UI logging to ui-debug.log
functions: Watching "C:\Users\boni\Documents\dev\cloud-functions-hello-
world\functions" for Cloud Functions... — _
. . v @ 1270005001/ ucdm-it-2024- 1 X+ -] X
+ functions: Using node@20 from host.
Serving at port 8490 < c o

127.0.0.1:5001/uc3m-it-2024-13345-professors/us-central1/app/hello-world w E} a

Hello world!
+ functions: Loaded functions definitions from source: app.

+ functions[us-centrall-app]: http function initialized
(http://127.0.0.1:5001/uc3m-1it-2025-13345-professors/us-centrall/app).

e
| v All emulators ready! It is now safe to connect your app.
| i Vview Emulator UI at http://127.0.0.1:4000/

| ———————————————————————————————

-

| Emulator | Host:Port | view in Emulator UI

| Functions | 127.0.0.1:5001 | http://127.0.0.1:4000/functions |
| Firestore | 127.0.0.1:8080 | http://127.0.0.1:4000/firestore |
I L EEEEE——————

ucam Mobile Applications - 5. Using web services in Android

5. Cloud functions - Hello world

[

L @ app-zTbtgsonaa-ucarunapp/ X ar

7. Deploy to Firebase:

> firebase deploy --only functions

c 2e app-z7btgsonaa-uc.a.run.app/hello-world

Hello world!
=== Deploying to 'uc3m-it-2024-13345-professors'...

deploying functions
preparing codebase default for deployment
ensuring required API cloudfunctions.googleapis.cd
ensuring required API cloudbuild.googleapis.com id
ensuring required API artifactregistry.goog
artifactregistry: required API artifactregistry.googleapis.cc
functions: required API cloudbuild.googleapis.com is enabled
+ functions: required API cloudfunctions.googleapis.com is enat
Loading and analyzing source code for codebase def
Serving at port 8497

preparing functions directory for uploading...
packaged C:\Users\boni\Documents\dev\cloud-functions-hello-world\functions (66.84 KB) for uploading
+ functions: functions folder uploaded successfully
creating Node.js 20 (1st Gen) function app(us-centrall)...
+ functions[app(us-centrall)] Successful create operation.
Function URL (app(us-centrall)): https://us-centrall-uc3m-it-2024-13345-professors.cloudfunctions.net/app
cleaning up build files...

+ Deploy complete!

Project Console: https://console.firebase.google.com/project/uc3m-it-2025-13345-professors/overview

38

Mobile Applications - 5. Using web services in Android

Table of contents

6. Takeaways

6.

Mobile Applications - 5. Using web services in Android

Takeaways

* A web service is a distributed software system designed to allow
different software to interact built on the top of HTTP

°R

EST is a popular architectural style for implementing web services

* JSON is a lightweight data-interchange format very popular for data
exchange in REST services

* We can implement a REST client in an Android app using an existing

l
*C
a

orary such as Retrofit
oud Functions is a serverless framework provided by Firebase that

lows us to implement REST services in an easy way

	Mobile Applications
	Table of contents
	1. Introduction
	1. Introduction
	Table of contents
	2. HTTP
	2. HTTP
	2. HTTP
	2. HTTP
	Table of contents
	3. REST services
	3. REST services
	3. REST services
	3. REST services
	3. REST services - JSON
	3. REST services - JSON
	3. REST services - Tools
	3. REST services - Tools
	Table of contents
	4. REST clients in Android
	4. REST clients in Android - Retrofit
	4. REST clients in Android - Retrofit
	4. REST clients in Android - Retrofit
	4. REST clients in Android - Retrofit
	4. REST clients in Android - Retrofit
	Table of contents
	5. Cloud functions
	5. Cloud functions - Node.js
	5. Cloud functions - Node.js
	5. Cloud functions - Node.js
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	5. Cloud functions - Hello world
	Table of contents
	6. Takeaways

