
Mobile Applications
3. Intents and broadcast receivers in

Android
Boni García

boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. Intents
3. Broadcast receivers
4. Takeaways

Mobile Applications - 3. Intents and broadcast receivers in Android 2

1. Introduction
• What we have learned so far:

− Android apps are created using some building block called app components,
namely: activities, services, content providers, and broadcast receivers

− Among them, we learned that activities represents screens on the user
interface (UI) in Android apps

− In Jetpack Compose, we usually implement single-activity apps in which we use
the Navigation Component to navigate between different screens

− Intents are messaging objects use to request an action from one app
component to other (e.g., start a second activity)

• What is new in this unit:
− We continue learning about intents
− We understand how to create broadcast receivers

Mobile Applications - 3. Intents and broadcast receivers in Android 3

Table of contents
1. Introduction
2. Intents

− Explicit intents
− Attributes
− Actions
− Categories
− Filters
− Implicit intents
− Activity result

3. Broadcast receivers
4. Takeaways

Mobile Applications - 3. Intents and broadcast receivers in Android 4

2. Intents
• Intents are a way to express a user’s intention to perform a given action

− In the source code (Java/Kotlin), an intent is a messaging object we can use to
request an action from another app component

• Three of the four component types (activities, services, and broadcast
receivers) are activated by intents:
− Starting an activity

• For example, when the app launcher starts the main activity
− Starting a service
− Delivering a broadcast message

Mobile Applications - 3. Intents and broadcast receivers in Android 5

https://developer.android.com/training/basics/intents

https://developer.android.com/training/basics/intents

2. Intents
• There are two types on intents in Android:

− Explicit intents
• Used for communication within the same app
• We specify the exact component (by class name) to be invoked

− Implicit intents
• Used for communication between different apps
• Do not specify the exact component. Instead, they declare a general action to perform,

and the system determines the appropriate component to handle it

• When intent is sent to all apps in the system, we call them as
broadcast intents
− Broadcast intents can be explicit or implicit

• When the intents are defined by the Android system, we call them as
system intents

Mobile Applications - 3. Intents and broadcast receivers in Android 6

2. Intents - Explicit intents
• We already have seen an app using an explicit intent to start a second

activity:

Mobile Applications - 3. Intents and broadcast receivers in Android 7

MainActivity.kt

@Composable
fun MyLayout(modifier: Modifier = Modifier) {

var text by rememberSaveable { mutableStateOf("") }
val context = LocalContext.current

Column(modifier = modifier) {
Text(text = stringResource(R.string.text_msg))
TextField(

value = text,
onValueChange = { text = it },
modifier = Modifier.fillMaxWidth()

)
Button(

onClick = {
val intent = Intent(context, SecondActivity::class.java).apply {

putExtra("name", text)
}
context.startActivity(intent)

},
) {

Text(stringResource(R.string.button_msg))
}

}
}

class SecondActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
enableEdgeToEdge()
setContent {

MyAppTheme {
Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

val name = intent.getStringExtra("name")
val hello = String.format(stringResource(R.string.hello_msg), name)
MyLayout(modifier = Modifier.padding(innerPadding), hello)

}
}

}
}

}

SecondActivity.kt

Type of navigation is not
necessary when using the

Navigation Component

https://github.com/bonigarcia/android-examples/tree/main/IntentsExplicit

2. Intents - Attributes
• Intents can be created as Kotlin objects as follows:
• Some relevant attributes of the Intent objects are:

− Extras: key-value pairs that can be attached to an intent to pass additional data

− Actions: desired operation or behavior that we want to perform, represented with a
string that unequivocally identified the intent

− Category: additional information about the intent purpose

− Data: data on which the action should be performed, represented with and Uniform
Resource Identifier (URI)

Mobile Applications - 3. Intents and broadcast receivers in Android 8

val intent = Intent

intent.setData(Uri.parse("https://www.google.com"))

Actions can be custom (i.e., defined
by an app) or system (i.e. defined

by the Android system)

intent.putExtra("name", value)

intent.setAction("es.uc3m.android.sendbroadcast")
intent.setAction("android.intent.action.DIAL")

intent.addCategory("android.intent.category.DEFAULT")
Also, categories can be

custom or system

2. Intents - Actions

Mobile Applications - 3. Intents and broadcast receivers in Android 9

https://developer.android.com/reference/kotlin/android/content/Intent

Constant Value Description
ACTION_MAIN "android.intent.action.MAIN" Entry point for an app
ACTION_VIEW "android.intent.action.VIEW" Display some data to the user

(e.g., using a web browser)
ACTION_DIAL "android.intent.action.DIAL" Dial some number to make a

phone call
ACTION_ANSWER "android.intent.action.ANSWER" Handle an incoming phone call
ACTION_SEARCH "android.intent.action.ACTION_SEARCH" Perform a search
ACTION_AIRPLANE_MODE_CHANGED "android.intent.action.AIRPLANE_MODE" Change to airplane mode
ACTION_BATTERY_LOW "android.intent.action.BATTERY_LOW" Battery level <= 15%
ACTION_POWER_CONNECTED "android.intent.action.POWER_CONNECTED" The external power has been

connected
ACTION_POWER_DISCONNECTED "android.intent.action.ACTION_POWER_DISCONNECTED" The external power has been

removed

System actions are defined as string
constants in the class Intent, e.g.:

https://developer.android.com/reference/kotlin/android/content/Intent

2. Intents - Categories

Mobile Applications - 3. Intents and broadcast receivers in Android 10

https://developer.android.com/reference/kotlin/android/content/Intent

Constant Value Description
CATEGORY_LAUNCHER "android.intent.category.LAUNCHER" This category is used with the main activity of an

application. It indicates that the activity should be a
primary entry point for the app and appear in the app
launcher (part of the Android system that manages the
home screen and app icons)

CATEGORY_DEFAULT "android.intent.category.DEFAULT" The default category is often used in conjunction with
actions to indicate that the intent is a general-purpose
action

BROWSABLE "android.intent.category.BROWSABLE" This category is often used with activities that can be
launched from a web browser. It indicates that the activity
can be safely invoked from a browser, allowing deep
linking from web pages, i.e., custom URL schemes (e.g.,
myapp://) that, when clicked, open the app directly

System categories are defined as string
constants in the class Intent, e.g.:

https://developer.android.com/reference/kotlin/android/content/Intent

2. Intents - Filters
• Intent filters (<intent-filter> in the manifest) define the types of

intents that a app component (e.g., an activity) can respond to
• We use intent filters to:

− Specify the main activity (i.e., the app entry point)
− Indicate the implicit intents that an activity is interested
− Indicate the broadcast intents that a Broadcast Receiver is interested

• For instance:

Mobile Applications - 3. Intents and broadcast receivers in Android 11

<activity
android:name=".MainActivity"
android:exported="true">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

The main activity of an app is defined using
this intent filter:

• android.intent.action.MAIN : This
activity will be the home page

• android.intent.category.LAUNCHER : This
activity is listed in the app launcher

2. Intents - Implicit intents
• Implicit intents in Android are a type of intent that does not specify

the exact component (e.g., activity, service, or broadcast receiver) to
be invoked
− Instead, it describes a general action to be performed, and the Android system

determines the appropriate component to handle the intent based on the
action and data provided

• Implicit intents are commonly used to request actions from other apps
or system components, such as opening a web page, sending an email,
or sharing content
− The Android system finds the appropriate component to start by comparing the

contents of the intent to the intent filters declared in the manifest file of other
apps on the device

− If the intent matches an intent filter, the system starts that component and
delivers it the Intent object

Mobile Applications - 3. Intents and broadcast receivers in Android 12

2. Intents - Implicit intents

Mobile Applications - 3. Intents and broadcast receivers in Android 13

The examples repository
contains a sample app that
manages implicit intents

(both custom and system)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">

<application
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:theme="@style/Theme.MyApp">
<activity

android:name=".MainActivity"
android:exported="true">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity

android:name=".ImplicitActivity"
android:exported="true">
<intent-filter>

<action android:name="es.uc3m.android.implicit" />
<category android:name="android.intent.category.DEFAULT" />

</intent-filter>
</activity>

</application>

</manifest>

The activity will be started
when using the action

"es.uc3m.android.implicit"
in an implicit intent

https://github.com/bonigarcia/android-examples/tree/main/IntentsImplicit

2. Intents - Implicit intents

Mobile Applications - 3. Intents and broadcast receivers in Android 14

MainActivity.kt

ImplicitActivity.kt

Button(
onClick = {

val intent = Intent("es.uc3m.android.implicit")
val currentDate =

SimpleDateFormat("dd/M/yyyy hh:mm:ss", Locale.ROOT).format(Date())
intent.putExtra("date", currentDate)
context.startActivity(intent)

},
) {

Text(stringResource(R.string.button1))
}

class ImplicitActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
enableEdgeToEdge()
setContent {

MyAppTheme {
Surface(

modifier = Modifier.fillMaxSize(),
color = MaterialTheme.colorScheme.background

) {
val date = intent.getStringExtra("date")
MyLayout(String.format("%s", date))

}
}

}
}

}

https://github.com/bonigarcia/android-examples/tree/main/IntentsImplicit

2. Intents - Implicit intents

Mobile Applications - 3. Intents and broadcast receivers in Android 15

This app also sends several
implicit intents

Button(
onClick = {

val intent = Intent(Intent.ACTION_VIEW, Uri.parse("https://www.google.com"))
context.startActivity(intent)

},
) {

Text(stringResource(R.string.button2))
}

https://github.com/bonigarcia/android-examples/tree/main/IntentsImplicit

2. Intents - Implicit intents

Mobile Applications - 3. Intents and broadcast receivers in Android 16

This app also sends several
implicit intents

Button(
onClick = {

val intent = Intent(Intent.ACTION_DIAL, Uri.parse("tel:666555444"))
context.startActivity(intent)

},
) {

Text(stringResource(R.string.button3))
}

https://github.com/bonigarcia/android-examples/tree/main/IntentsImplicit

2. Intents - Implicit intents

Mobile Applications - 3. Intents and broadcast receivers in Android 17

This app also sends several
implicit intents

Button(
onClick = {

val intent = Intent(Intent.ACTION_SEARCH)
intent.putExtra(SearchManager.QUERY, "Developing Android apps")
context.startActivity(intent)

},
) {

Text(stringResource(R.string.button4))
}

https://github.com/bonigarcia/android-examples/tree/main/IntentsImplicit

2. Intents - Activity result
• We can use intents to send back a result to the parent activity. This

feature can be useful, for example:
− An app can start a camera app and receive the captured photo as a result
− An app start the Contacts app and receive the contact details as a result

• The procedure to getting results from activities is the following:
− From the first activity:

1. Create an instance of an activity result launcher
2. Registering a callback for receiving the result
3. Launching an intent using activity for result

− From the second activity:
4. Create a result intent
5. Define a result code
6. Finish the activity

Mobile Applications - 3. Intents and broadcast receivers in Android 18

@Composable
fun MyLayout(modifier: Modifier = Modifier) {

var text by rememberSaveable { mutableStateOf("") }
val context = LocalContext.current
val launcher = rememberLauncherForActivityResult(

contract = ActivityResultContracts.StartActivityForResult()
) { result ->

println("The result code is " + result.resultCode)
val data = result.data?.getStringExtra("message")
Toast.makeText(context, data, Toast.LENGTH_SHORT).show()

}

Column(modifier = modifier) {
Text(text = stringResource(R.string.text_msg))
TextField(

value = text,
onValueChange = { text = it },
modifier = Modifier.fillMaxWidth()

)
Button(

onClick = {
val intent = Intent(context, SecondActivity::class.java).apply {

putExtra("name", text)
}
launcher.launch(intent)

},
) {

Text(stringResource(R.string.button1))
}

}
}

2. Intents - Activity result

Mobile Applications - 3. Intents and broadcast receivers in Android 19

1. Create an
instance of an
activity result

launcher

2. Registering a
callback for

receiving the result

3. Launching an
intent using activity

for result

MainActivity.kt

https://github.com/bonigarcia/android-examples/tree/main/IntentsExplicitResults

@Composable
fun MyLayout(modifier: Modifier = Modifier, text: String) {

val okMessage = stringResource(R.string.ok_message)
val cancelMessage = stringResource(R.string.cancel_message)
val context = LocalContext.current

Column(modifier = modifier) {
Text(text = text)
Row() {

Button(
onClick = {

if (context is Activity) {
finishActivity(context, okMessage, Activity.RESULT_OK)

}
},

) {
Text(stringResource(R.string.button2))

}
Button(

modifier = Modifier.padding(start = 16.dp),
onClick = {

if (context is Activity) {
finishActivity(context, cancelMessage, Activity.RESULT_CANCELED)

}
},

) {
Text(stringResource(R.string.button3))

}
}

}
}

private fun finishActivity(context: Activity, resultData: String, resultCode: Int) {
val resultIntent = Intent().apply {

putExtra("message", resultData)
}
context.setResult(resultCode, resultIntent)
context.finish()

}

2. Intents - Activity result

Mobile Applications - 3. Intents and broadcast receivers in Android 20

4. Create a result intent
5. Define a result code

6. Finish the activity

SecondActivity.kt

https://github.com/bonigarcia/android-examples/tree/main/IntentsExplicitResults

2. Intents - Activity result
• A common use case for using activity results is when accesing the

device camera from our app to take a picture:

Mobile Applications - 3. Intents and broadcast receivers in Android 21

@Composable
fun CameraCaptureScreen() {

var imageBitmap by remember { mutableStateOf<Bitmap?>(null) }
val context = LocalContext.current
val cameraLauncher = rememberLauncherForActivityResult(

contract = ActivityResultContracts.StartActivityForResult()
) { result ->

if (result.resultCode == Activity.RESULT_OK) {
val bitmap = result.data?.extras?.get("data") as? Bitmap
imageBitmap = bitmap

}
}

// ...

}

fun launchCamera(launcher: ActivityResultLauncher<Intent>) {
launcher.launch(Intent(MediaStore.ACTION_IMAGE_CAPTURE))

}

By default, the AVD takes a
virtual scene picture, but it
can be changed to use the

laptop webcam

https://github.com/bonigarcia/android-examples/tree/main/TakePicture

Table of contents
1. Introduction
2. Intents
3. Broadcast receivers
4. Takeaways

Mobile Applications - 3. Intents and broadcast receivers in Android 22

3. Broadcast receivers
• A Broadcast Receiver is a type of Android app component that allows

to listen and responds to broadcast intents
− Broadcast Receivers operate in the background and do not have a UI

• Broadcast intents are system wide messages sent out from another
app or the system to all apps that have registered an interested
broadcast receiver
− Broadcast intents are Intent objects that are broadcast via a call to the

following Activity methods:
• sendBroadcast() : normal broadcast. This operation is asynchronous, i.e., any receivers

receive these intents in no particular order
• sendOrderedBroadcast() : ordered broadcast. This operation is synchronous, i.e.,

receivers should receive these intents in the order they were sent

Mobile Applications - 3. Intents and broadcast receivers in Android 23

https://developer.android.com/develop/background-work/background-tasks/broadcasts

https://developer.android.com/develop/background-work/background-tasks/broadcasts

3. Broadcast receivers
• The procedure to create a Broadcast Receiver in an Android app is the

following:
1. Create a Java/Kotlin class that extends BroadcastReceiver
2. Register this Java class in the manifest using an receiver tag
3. Register an intent filter to indicate the types of broadcast intents

the Broadcast Receiver it is interested
− To improve the overall system performance, since Android 8, broadcast

receivers must be registered in runtime (i.e., in Java/Kotlin, and not in the
manifest)

− When broadcast intent match, the receiver is invoked by the Android system

Mobile Applications - 3. Intents and broadcast receivers in Android 24

3. Broadcast receivers
• We can create an Broadcast Receiver in Android Studio using the

wizard FileNewOtherBroadcast Receiver

Mobile Applications - 3. Intents and broadcast receivers in Android 25

3. Broadcast receivers
• We can create an Broadcast Receiver in Android Studio using the

wizard FileNewOtherBroadcast Receiver

Mobile Applications - 3. Intents and broadcast receivers in Android 26

<receiver
android:name=".MyReceiver"
android:enabled="true"
android:exported="true"></receiver>

Using this wizard, Android Studio
first created the Java class for the

receiver and includes a
receiver tag in the Manifest

class MyReceiver : BroadcastReceiver() {

override fun onReceive(context: Context, intent: Intent) {
// This method is called when the BroadcastReceiver is receiving an Intent broadcast.
TODO("MyReceiver.onReceive() is not implemented")

}
}

class MainActivity : ComponentActivity() {

private val myBroadcastIntent = "es.uc3m.android.sendbroadcast"

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

// Register my broadcast receiver
val receiver = MyReceiver()
val filter = IntentFilter().apply {

addAction(myBroadcastIntent)
addAction(Intent.ACTION_AIRPLANE_MODE_CHANGED)
addAction(Intent.ACTION_BATTERY_LOW)

}

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) {
registerReceiver(receiver, filter, RECEIVER_EXPORTED)

} else {
@Suppress("UnspecifiedRegisterReceiverFlag")
registerReceiver(receiver, filter)

}

enableEdgeToEdge()
setContent {

MyAppTheme {
Surface(

modifier = Modifier.fillMaxSize(),
color = MaterialTheme.colorScheme.background

) {
MyScreen(action = myBroadcastIntent)

}
}

}

@Composable
fun MyScreen(action: String) {

val context = LocalContext.current

Column(
horizontalAlignment = Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center

) {
Button(

onClick = {
val intent = Intent(action)
context.sendBroadcast(intent)

},
) {

Text(stringResource(R.string.button))
}

}
}

3. Broadcast receivers

Mobile Applications - 3. Intents and broadcast receivers in Android 27

When the user clicks on the UI
button, the intent with action
es.uc3m.android.sendbroadcast

is send by broadcast

The intent filter must be specified in
the Java/Kotlin logic. In this example, a
custom intent plus two native events

will be handled by the broadcast
receiver (called MyReceiver)

https://github.com/bonigarcia/android-examples/tree/main/BroadcastReceiver

3. Broadcast receivers

Mobile Applications - 3. Intents and broadcast receivers in Android 28

class MyReceiver : BroadcastReceiver() {

override fun onReceive(context: Context, intent: Intent) {
val message = "Broadcast intent detected: " + intent.action
Toast.makeText(context, message, Toast.LENGTH_LONG).show()

}

}

The broadcast receiver simply shows
a toast to the user display the

intent’s actions

https://github.com/bonigarcia/android-examples/tree/main/BroadcastReceiver

3. Broadcast receivers

Mobile Applications - 3. Intents and broadcast receivers in Android 29

Also, when setting the airplane
mode, the broadcast system
intent is also received by our

broadcast receiver

https://github.com/bonigarcia/android-examples/tree/main/BroadcastReceiver

3. Broadcast receivers

Mobile Applications - 3. Intents and broadcast receivers in Android 30

We can change the battery
level with using the extended
controls of the virtual device

https://github.com/bonigarcia/android-examples/tree/main/BroadcastReceiver

3. Broadcast receivers
• To simulate the power plug and unplug (and other options), we can

use the command-line tool adb
• Android Debug Bridge (adb) is a tool for debugging Android devices.

It is part of the Android SDK, and it is installed on:
− Windows: C:\Users\[user]\AppData\Local\Android\sdk\platform-tools
− Mac: ~/Library/Android/sdk/platform-tools/
− Linux: /usr/share/android-sdk/platform-tools/

Mobile Applications - 3. Intents and broadcast receivers in Android 31

adb shell dumpsys battery set level 15

https://developer.android.com/studio/command-line/adb

https://developer.android.com/studio/command-line/adb

Table of contents
1. Introduction
2. Intents
3. Broadcast receivers
4. Takeaways

Mobile Applications - 3. Intents and broadcast receivers in Android 32

4. Takeaways
• Intents are messaging object we use to request an action from one app

component to other
• Explicit intents are used to start activities or services defining explicitly the

target component that should be invoked
• Implicit intents are used to for communication between different apps by

requesting an action without specifying the target component
• Broadcast intents are system wide messages sent out from another app or

the system to all app that have registered an interested broadcast receiver
• A broadcast receiver is a type of app component that allows us to listen

and responds to broadcast intents
• Android Debug Bridge (adb) is a command-line tool for debugging Android

devices

Mobile Applications - 3. Intents and broadcast receivers in Android 33

	Mobile Applications
	Table of contents
	1. Introduction
	Table of contents
	2. Intents
	2. Intents
	2. Intents - Explicit intents
	2. Intents - Attributes
	2. Intents - Actions
	2. Intents - Categories
	2. Intents - Filters
	2. Intents - Implicit intents
	2. Intents - Implicit intents
	2. Intents - Implicit intents
	2. Intents - Implicit intents
	2. Intents - Implicit intents
	2. Intents - Implicit intents
	2. Intents - Activity result
	2. Intents - Activity result
	2. Intents - Activity result
	2. Intents - Activity result
	Table of contents
	3. Broadcast receivers
	3. Broadcast receivers
	3. Broadcast receivers
	3. Broadcast receivers
	3. Broadcast receivers
	3. Broadcast receivers
	3. Broadcast receivers
	3. Broadcast receivers
	3. Broadcast receivers
	Table of contents
	4. Takeaways

