
Mobile Applications
1. Introduction to Android

Boni García
boni.garcia@uc3m.es

Telematic Engineering Department
School of Engineering

2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:boni.garcia@uc3m.es

Table of contents
1. Introduction
2. Android fundamentals
3. Introduction to Kotlin
4. Android Studio
5. App components
6. Project structure
7. Takeaways

Mobile Applications - 1. Introduction to Android 2

1. Introduction

Mobile Applications - 1. Introduction to Android 3

• A mobile application (often called simply app) is a software application
designed to run on a mobile device such as a phone, tablet, or watch
− Mobile devices are portable electronic device designed to be carried and used

on the go
− Mobile apps stand in contrast to desktop applications (which are designed to

run on desktop computers, such as Windows/macOS/Linux) or web
applications which (run in web browsers, such as Chrome/Firefox/Edge/Safari)

• A mobile operating system (mobile OS) is a specialized software
platform that manages the hardware and software resources of a
mobile device, such as a smartphone, tablet, or wearable device
− It serves as the interface between the user and the hardware, enabling apps to

function and providing essential services to users

1. Introduction

Mobile Applications - 1. Introduction to Android 4

• Nowadays, there are two main players in the mobile OS market:
− Android by Google
− iOS by Apple

https://gs.statcounter.com/os-market-share/mobile/worldwide/

https://gs.statcounter.com/os-market-share/mobile/worldwide/

1. Introduction

Mobile Applications - 1. Introduction to Android 5

• There are different ways for developing mobile apps:
1. Native development involves creating apps specifically for a given platform

(Android or iOS) using platform-specific programming languages and tools
2. Hybrid development combines web technologies (HTML, CSS, JavaScript)

with a WebView native container to create apps that work across multiple
platforms

3. Cross-platform development uses frameworks that allow developers to
write code once and deploy it on multiple platforms
− Unlike hybrid apps, cross-platform apps are compiled into native code

4. Progressive Web Apps (PWAs) are websites that behave like apps
− They run in a browser but can be installed on a device and used offline

5. Low-Code/No-Code Platforms that allow non-developers to create apps
using drag-and-drop interfaces and pre-built templates

1. Introduction

Mobile Applications - 1. Introduction to Android 6

App type Pros Cons

Native + High performance and responsiveness
+ Best user experience and design
consistency

- Requires separate codebases for each
platform (more development time and cost)

Hybrid + Easy for developers familiar with web
development
+ Single codebase for multiple platforms

- Slower performance compared to native apps
- Limited access to advanced device features

Cross-
platform

+ Saves development time and cost with a
single codebase
+ Good performance for most apps

- Performance may not match fully native apps
- Limited access to certain platform-specific
features (depending on the framework)

PWAs + No app store submission required
+ Can work on any device with a browser
+ Cost-effective and fast to develop

- Limited access to device hardware and native
features
- Can't match the performance of native apps

Low-Code/
No-Code

+ Speeds up development for simple apps
+ Requires little to no programming
knowledge

- Limited flexibility and scalability for complex
apps

Table of contents
1. Introduction
2. Android fundamentals

− Architecture
− Android API
− Android SDK
− Programming languages

3. Introduction to Kotlin
4. Android Studio
5. App components
6. Project structure
7. Takeaways

Mobile Applications - 1. Introduction to Android 7

2. Android fundamentals
• Android is an open-source mobile operating system (OS) based on a

modified version of Linux
− A mobile OS is used in smartphones, tablets, smartwatches, or other mobile

devices

• Android was originally developed by a startup named Android,
acquired by Google in 2005
− The Android source code is primarily licensed under the Apache 2.0 License

• Android is the most used operating system worldwide
− Android controls around 74% of OS market share nowadays (the remaining is

iOS)

Mobile Applications - 1. Introduction to Android 8

https://www.android.com/

https://www.android.com/

2. Android fundamentals - Architecture
• The architecture of Android (called Android platform) is a stack

divided into several layers:

Mobile Applications - 1. Introduction to Android 9

− Linux kernel: This is the foundation of the
Android platform. This layer contains all the
low-level device drivers for the various
hardware components of an Android device

− Hardware Abstraction Layer (HAL): This layer
provides standard interfaces that expose
hardware capabilities to the higher-level Java
API framework

− Android Runtime (ART): It provides an
application runtime environment for .dex
files (a bytecode format designed for
minimal memory footprint)

2. Android fundamentals - Architecture

Mobile Applications - 1. Introduction to Android 10

− Native C/C++ libraries: Libraries such as
OpenGL ES for high-performance 2D and
3D graphics processing

− Java API framework: The entire feature-set
of Android is available for developers
through APIs written in Java

− Apps: Android comes with a set of core
apps, such as Phone, Contacts, Browser,
and so on. In addition, many others apps
can be downloaded and installed from
Google Play (formerly Android Market)

• The architecture of Android (called Android platform) is a stack
divided into several layers:

2. Android fundamentals - Android API
• An API (Application Programming Interface) is a type of software interface

that allows two applications to talk to each other
− An API offers a service to other pieces of software

• All Android functionality is available to app developers through APIs written
in the Java language
− Android apps (written in Java or Kotlin) use that API

• The Android API contains the building block for creating Android apps, for
instance:
− Jetpack (suite of libraries to help developers follow best practices, reduce boilerplate)
− View System (for apps UIs)
− Resource Manager (for internationalization -I18N-, graphics, layouts)
− Notification Manager (for custom alerts in the status bar)
− Activity Manager (to manage the apps lifecycle)
− Content Provider (to manage access data)

Mobile Applications - 1. Introduction to Android 11

https://developer.android.com/reference

https://developer.android.com/reference

2. Android fundamentals - Android SDK
• A SDK (Software Development Kit) is a collection of software

development tools in one installable package
• The Android SDK includes a comprehensive set of development tools,

including a debugger, emulator, documentation, sample code, and
tutorials

• There are different versions of the Android SDK
− Each Android SDK is linked to a version of the Android platform
− Each Android Platform uses a default version of the Android API (called API

level)
− In this course, it is recommended to use SDK 7.0 as the minimum

Mobile Applications - 1. Introduction to Android 12

https://apilevels.com/

https://apilevels.com/

2. Android fundamentals - Android SDK

Mobile Applications - 1. Introduction to Android 13

Platform version Code name API Level

Android 14 Upside Down Cake 34

Android 13 Tiramisu 33

Android 12 Snow Cone 31

Android 11 Red Velvet Cake 30

Android 10 Quince Tart 29

Android 9 Pie 28

Android 8.1 Oreo 27

Android 8.0 Oreo 26

Android 7.1 Nougat 25

Android 7.0 Nougat 24

Android 6.0 Marshmallow 23

Android 5.1 Lollipop 22

Android 5.0 Lollipop 21

Android 4.4 Kikkat 19

Recommended
for this course

(minSdk)

2. Android fundamentals - Programming languages
• Android apps can be developed with Java or Kotlin

− Java is a popular high-level, object-oriented programming language
• It was originally developed by Sun Microsystems in the mid-1990s
• It is now owned and maintained by Oracle Corporation

− Kotlin is modern high-level, object-oriented programming language
• It was created by JetBrains in 2010, first released on 2016
• It was designed to be concise, safer, and expressive
• It is fully interoperable with Java, meaning that Kotlin code can coexist and

interact seamlessly with existing Java code
• It was officially endorsed by Google for Android development in 2017

• Google started to recommend using Kotlin in Android apps due
to legal issues with Oracle
− The use of Java by Google in Android was demanded by Oracle in 2010
− In April 2021, the US Supreme Court declares Google's code copying fair

Mobile Applications - 1. Introduction to Android 14

We use Kotlin for
the code examples

in the master
lectures

Table of contents
1. Introduction
2. Android fundamentals
3. Introduction to Kotlin
4. Android Studio
5. App components
6. Project structure
7. Takeaways

Mobile Applications - 1. Introduction to Android 15

3. Introduction to Kotlin
• Kotlin is a programming language officially supported by Google for

Android development. The key features of Kotlin are:
− Interoperability with Java: Kotlin is 100% interoperable with Java
− Rich Android support: Kotlin integrates seamlessly with the Android APIs and

tools
− Concise syntax: Kotlin reduces boilerplate code, making it shorter and easier

to read compared to Java
− Null safety: Nullable and non-nullable types are clearly distinguished
− Default and named parameters: Function parameters can have default values,

and named parameters make method calls clearer
− Extension functions: Kotlin allows developers to add new functionality to

existing classes
− Coroutines for asynchronous programming: Coroutines provide a clean, non-

blocking way to handle tasks without the complexity of callbacks

Mobile Applications - 1. Introduction to Android 16

https://kotlinlang.org/

https://kotlinlang.org/

3. Introduction to Kotlin
• Some code examples:

Mobile Applications - 1. Introduction to Android 17

// Java
public class User {

private String name;
public String getName() { return name; }
public void setName(String name) { this.name = name; }

}

// Kotlin
data class User(var name: String)

Concise syntax

fun String.isEmail(): Boolean {
return this.contains("@")

}

val email = "example@gmail.com"
println(email.isEmail()) // true

Extension functions

Default parameters

fun greet(name: String = "Guest", age: Int = 18) {
println("Hello, $name! You are $age years old.")

}

// Usage:
greet() // "Hello, Guest! You are 18 years old."
greet("Alice") // "Hello, Alice! You are 18 years old."
greet("Bob", 25) // "Hello, Bob! You are 25 years old."

Named parameters

fun greet(name: String = "Guest", age: Int = 18) {
println("Hello, $name! You are $age years old.")

}

// Usage with named parameters:
greet(age = 25, name = "Charlie") // "Hello, Charlie! You are 25 years old."
greet(name = "Diana") // "Hello, Diana! You are 18 years old."

var name: String = "John" // Non-nullable
var nullableName: String? = null // Nullable

Null safety

Table of contents
1. Introduction
2. Android fundamentals
3. Introduction to Kotlin
4. Android Studio

− SDK manager
− Virtual Device Manager

5. App components
6. Project structure
7. Takeaways

Mobile Applications - 1. Introduction to Android 18

4. Android Studio
• Android Studio is the official development platform for Android

− It is based on Intellij IDEA, which is a popular and comprehensive IDE
(Integrated Development Environment)

• An IDE is a software application that provides comprehensive facilities for software
development (e.g., source code editor, build automation tools, debugger, etc.)

• Some relevant integrated tools in Android Studio are:
− SDK Manager: tool that allows developers to download, update, and manage

the Android SDK (Software Development Kit)
− Virtual Device Manager (VDM): tool that allows to create and manage

Android Virtual Devices (AVDs)

Mobile Applications - 1. Introduction to Android 19

https://developer.android.com/studio

https://developer.android.com/studio

4. Android Studio - SDK manager
• The Android SDK is a set of development tools (debugger, emulator) and

system images (Android versions) necessary for developing Android apps
• The SDK Manager is a tool that allows developers to download, update,

and manage the Android SDK

Mobile Applications - 1. Introduction to Android 20

4. Android Studio - Virtual Device Manager
• An Android Virtual Device (AVD) is an emulator that allows us to model an

actual mobile device
• The Virtual Device Manager is a tools that allows us to download and install

different emulated Android virtual devices
− AVDs can be phones, tables, TV, wearables, or automotive

Mobile Applications - 1. Introduction to Android 21

Table of contents
1. Introduction
2. Android fundamentals
3. Introduction to Kotlin
4. Android Studio
5. App components
6. Project structure
7. Takeaways

Mobile Applications - 1. Introduction to Android 22

5. App components
• App components are the essential building blocks that define the

structure and behavior of an Android app
− We can see these app components as, modular pieces that work together to

create a functional app
− In other words, an Android app is the combination of one or more app

components
− App components are implemented using specific classes (Kotlin or Java) and

configurations
− Each component type has its own implementation pattern, and they must be

declared in the AndroidManifest.xml file (except for dynamic broadcast
receivers)

Mobile Applications - 1. Introduction to Android 23

https://developer.android.com/guide/components/fundamentals

https://developer.android.com/guide/components/fundamentals

5. App components
• There are four different types of app components:

Mobile Applications - 1. Introduction to Android 24

Activities Services

Broadcast
receivers

Content
providers

5. App components - Activities
1. Activities

− Purpose: Represents a single screen with a user interface (UI). Activities are
responsible for interacting with the user and handling UI-related tasks

− Example: A login screen, a settings screen, or a details page

2. Services
− Purpose: Runs in the background to perform long-running operations or tasks

without a user interface. Services can continue running even if the user
switches to another app

− Example: Playing music in the background, syncing data with a server, or
performing network operations

Mobile Applications - 1. Introduction to Android 25

5. App components - Activities
3. Broadcast receivers

− Purpose: Listens for system-wide or app-specific events (broadcasts) and
responds to them. Broadcasts can be sent by the system (e.g., battery low,
airplane mode) or by apps

− Example: Responding to a low battery warning, detecting when the device is
connected to wifi

4. Content providers
− Purpose: Manages access to a structured set of data, enabling data sharing

between apps. Content providers encapsulate data and provide mechanisms
for defining data security

− Example: Sharing contact information, accessing media files, or providing
custom data storage for other apps

Mobile Applications - 1. Introduction to Android 26

5. App components - Activities

Mobile Applications - 1. Introduction to Android 27

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
enableEdgeToEdge()
setContent {

HelloWorldTheme {
Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

Greeting(
name = "Android",
modifier = Modifier.padding(innerPadding)

)
}

}
}

}
}

@Composable
fun Greeting(name: String, modifier: Modifier = Modifier) {

Text(
text = "Hello $name!",
modifier = modifier

)
}

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {

HelloWorldTheme {
Greeting("Android")

}
}

We implement app
components (e.g.,

activities) with Kotlin (or
Java)

In this course will use
Jetpack Compose to

define the UI

The parent class in
Jetpack Compose to

implement activities is
ComponentActivity

The activity lifecycle is
Managed by the Android
system through lifecycle

callbacks (i.e., the methods
onCreate, onStart,
onResume, onPause,
onStop, onDestroy)

Table of contents
1. Introduction
2. Android fundamentals
3. Introduction to Kotlin
4. Android Studio
5. App components
6. Project structure

− Gradle
− The manifest file
− The build.gradle (app) file

7. Takeaways

Mobile Applications - 1. Introduction to Android 28

6. Project structure - Gradle
• Android Studio uses Gradle as build tool

− Gradle is a popular build tool for Java/Kotlin
• Another popular alternative of build tool for Java-based projects is Maven

− Build tools are software utilities used to automate the creation of executable
applications from source code

− These tools ease the project management in terms of dependencies
management, compilation, packaging, test execution, and deployment

• The simplified build lifecycle done in Android Studio with Gradle is:

Mobile Applications - 1. Introduction to Android 29

https://gradle.org/

Android
Project

Android
Package

(APK)

Compile, package Deploy to AVD
An APK is an archive file

(.apk suffix) which contains
the contents of an Android

app that are required at
runtime

https://developer.android.com/build

https://gradle.org/
https://developer.android.com/build

6. Project structure - Gradle
• When starting a new project, Android Studio automatically creates

the project scaffolding (i.e., the structure) automatically:

Mobile Applications - 1. Introduction to Android 30

Each Gradle project contains a
top-level setup files

(build.gradle and
setting.gradle). These files
contain common configurations

for all modules

Gradle modules can be seen as
separate components within

the same project. In an Android
app, by default there will be a

single module called app which
contains the source code of the

Android app

Each Gradle module has its own
configuration file (build.gradle or

build.gradle.kts)

The src folder contains the module
source code. This folder contains the

Java/Kotlin classes (*.java and *.kt
files) and the resources (e.g., pictures

and other Android setup files)

Manifest file (i.e., main configuration
file for the app)

6. Project structure - Gradle
• A closer look to the structure of a Gradle project:

Mobile Applications - 1. Introduction to Android 31

Manifest file

Kotlin (and Java) sources

Resources folder

Theme (i.e., app global styles)
defined in XML

Gradle scripts

Graphics

Automated tests source code
(instrumented and unit tests)

Colors and strings, defined in
XML

App source code

Icons

6. Project structure - The manifest file
• Every Android app project must have a file called
AndroidManifest.xml file (with precisely that name)
− XML (Extensible Markup Language) is a markup language for storing and

transmitting arbitrary data

• This manifest file describes essential information about an app, such
as the apps components, permissions, and application metadata

• This file (and the rest of the project scaffolding) is created by Android
Studio when creating a new project

Mobile Applications - 1. Introduction to Android 32

https://developer.android.com/guide/topics/manifest/manifest-intro

https://developer.android.com/guide/topics/manifest/manifest-intro

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">

<application
android:allowBackup="true"
android:dataExtractionRules="@xml/data_extraction_rules"
android:fullBackupContent="@xml/backup_rules"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/Theme.HelloWorld"
tools:targetApi="31">
<activity

android:name=".MainActivity"
android:exported="true"
android:label="@string/app_name"
android:theme="@style/Theme.HelloWorld">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>

</manifest>

6. Project structure - The manifest file
• An example of manifest file create by Android Studio is as follows:

Mobile Applications - 1. Introduction to Android 33

The tag
application
defines the app

components
(activities, services,

broadcast
receivers, and

content providers)

The tag activity
defines an activity

The tag intent-filter specifies the types of intents that an
activity, service, or broadcast receiver can respond to. In this example:

• android.intent.action.MAIN : This activity will be the home page
• android.intent.category.LAUNCHER : This activity is listed in the app launcher

6. Project structure - The manifest file
• For basic apps, the previous manifest file (generated by Android

Studio) can be simplified as follows:

Mobile Applications - 1. Introduction to Android 34

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">

<application
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:theme="@style/Theme.HelloWorld">
<activity

android:name=".MainActivity"
android:exported="true">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>

</manifest>

https://github.com/bonigarcia/android-examples/tree/main/HelloWorld

6. Project structure - The build.gradle (app) file
• The file build.gradle is a configuration file used by Gradle to

define how a project should be built
• In this file, we specify various aspects of your project, such as

dependencies, tasks, plugins, and other settings
• In Android app, there are two syntaxes of defining this file:

− Groovy (build.gradle). Traditional format
− Kotlin DSL (build.gradle.kts). New format based on Kotlin aimed to

improve the readability

Mobile Applications - 1. Introduction to Android 35

Both formats achieve the same goal of defining
and configuring the build process in Gradle. We

will use Kotlin DSL in the examples

plugins {
alias(libs.plugins.android.application)
alias(libs.plugins.kotlin.android)
alias(libs.plugins.kotlin.compose)

}

6. Project structure - The build.gradle (app) file

Mobile Applications - 1. Introduction to Android 36

• Plugin section:
− Gradle plugins are tools that extend the functionality of Gradle
− For Android, we use the following plugins:

• android.application: To build Android applications
• kotlin.android: To use Kotlin for Android development
• kotlin.compose: To enable Jetpack Compose (Android's modern UI toolkit)

− The version of these plugins are located in a centralized location called the
version catalog (libs.versions.toml file):

build.gradle.kts

libs.version.toml

[versions]
agp = "8.8.0"
kotlin = "2.0.0"

[plugins]
android-application = { id = "com.android.application", version.ref = "agp" }
kotlin-android = { id = "org.jetbrains.kotlin.android", version.ref = "kotlin" }
kotlin-compose = { id = "org.jetbrains.kotlin.plugin.compose", version.ref = "kotlin" }

6. Project structure - The build.gradle (app) file

Mobile Applications - 1. Introduction to Android 37

• Android section. Relevant fields:
− namespace: package name for the

Java/Kotlin source code
− compileSdk: Android SDK version

used to compile the app
− applicationId: unique ID of our

app
− minSdk: minimum Android API level

required for running our app
− targetSdk: highest API level that

our app is aware

android {
namespace = "es.uc3m.android.helloworld"
compileSdk = 35

defaultConfig {
applicationId = "es.uc3m.android.helloworld"
minSdk = 24
targetSdk = 35
versionCode = 1
versionName = "1.0"

testInstrumentationRunner = "androidx.test.runner.AndroidJUnitRunner"
}

buildTypes {
release {

isMinifyEnabled = false
proguardFiles(

getDefaultProguardFile("proguard-android-optimize.txt"),
"proguard-rules.pro"

)
}

}
compileOptions {

sourceCompatibility = JavaVersion.VERSION_11
targetCompatibility = JavaVersion.VERSION_11

}
kotlinOptions {

jvmTarget = "11"
}
buildFeatures {

compose = true
}

}

Common practice for SDK versions: decide
which is minimum SDK we support (Android 7

in our case) and use the latest SDK for
compilation and target

build.gradle.kts

6. Project structure - The build.gradle (app) file

Mobile Applications - 1. Introduction to Android 38

• Dependecies (external libraries that
our project uses:):
− implementation: main dependencies

(i.e., required by the app)
− testImplementation: unit test

dependencies
− androidTestImplementation:

dependencies for instrumented tests
(e.g., UI tests)

− debugImplementation: debugging-
only dependencies (e.g., UI tooling)

dependencies {
implementation(libs.androidx.core.ktx)
implementation(libs.androidx.lifecycle.runtime.ktx)
implementation(libs.androidx.activity.compose)
implementation(platform(libs.androidx.compose.bom))
implementation(libs.androidx.ui)
implementation(libs.androidx.ui.graphics)
implementation(libs.androidx.ui.tooling.preview)
implementation(libs.androidx.material3)
testImplementation(libs.junit)
androidTestImplementation(libs.androidx.junit)
androidTestImplementation(libs.androidx.espresso.core)
androidTestImplementation(platform(libs.androidx.compose.bom))
androidTestImplementation(libs.androidx.ui.test.junit4)
debugImplementation(libs.androidx.ui.tooling)
debugImplementation(libs.androidx.ui.test.manifest)

}

build.gradle.kts

[versions]
coreKtx = "1.15.0"
junit = "4.13.2"
junitVersion = "1.2.1"
...

[libraries]
androidx-core-ktx = { group = "androidx.core", name = "core-ktx", version.ref = "coreKtx" }
junit = { group = "junit", name = "junit", version.ref = "junit" }
androidx-junit = { group = "androidx.test.ext", name = "junit", version.ref = "junitVersion" }
...

libs.version.toml

https://central.sonatype.com/
https://maven.google.com/

https://central.sonatype.com/
https://maven.google.com/

Table of contents
1. Introduction
2. Android fundamentals
3. Introduction to Kotlin
4. Android Studio
5. App components
6. Project structure
7. Takeaways

Mobile Applications - 1. Introduction to Android 39

7. Takeaways
• Android is an open-source OS in which all its functionality is available

to app developers through its Java Android API
• Android apps can be developed with Java or Kotlin
• Each Android Platform version (e.g. Android 7) uses a default version

of the Android API (e.g. API 24)
• We use Android Studio as the development platform since it includes

all the tools required for creating apps (IDE, SDK manager, AVD
manager, Java compiler, debugger, …). Android Studio use Gradle for
the project build

• An Android app is the combination of one or more app components:
activities, services, broadcast receivers, content providers

Mobile Applications - 1. Introduction to Android 40

	Mobile Applications
	Table of contents
	1. Introduction
	1. Introduction
	1. Introduction
	1. Introduction
	Table of contents
	2. Android fundamentals
	2. Android fundamentals - Architecture
	2. Android fundamentals - Architecture
	2. Android fundamentals - Android API
	2. Android fundamentals - Android SDK
	2. Android fundamentals - Android SDK
	2. Android fundamentals - Programming languages
	Table of contents
	3. Introduction to Kotlin
	3. Introduction to Kotlin
	Table of contents
	4. Android Studio
	4. Android Studio - SDK manager
	4. Android Studio - Virtual Device Manager
	Table of contents
	5. App components
	5. App components
	5. App components - Activities
	5. App components - Activities
	5. App components - Activities
	Table of contents
	6. Project structure - Gradle
	6. Project structure - Gradle
	6. Project structure - Gradle
	6. Project structure - The manifest file
	6. Project structure - The manifest file
	6. Project structure - The manifest file
	6. Project structure - The build.gradle (app) file
	6. Project structure - The build.gradle (app) file
	6. Project structure - The build.gradle (app) file
	6. Project structure - The build.gradle (app) file
	Table of contents
	7. Takeaways

