
Computer Networks

5. Application layer (HTTP)

Boni García
http://bonigarcia.github.io/

boni.garcia@urjc.es

Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación
Escuela Técnica Superior de Ingeniería de Telecomunicación

Universidad Rey Juan Carlos

2019/2020

http://bonigarcia.github.io/
mailto:boni.garcia@urjc.es

Table of contents
1. Introduction
2. HTTP 1.1
3. HTTPS
4. HTTP 2
5. Takeaways

Computer Networks - 5. Application layer (HTTP) 1

Table of contents
1. Introduction

I. What is the Web?
II. HTML
III. HTTP versions

2. HTTP 1.1
3. HTTPS
4. HTTP 2
5. Takeaways

Computer Networks - 5. Application layer (HTTP) 2

1. Introduction - What is the Web?
• The Web (World Wide Web) is a service for the
distribution of hypertext content accessible via the
Internet

• As we already know, the Internet is a decentralized
set of interconnected networks that use the TCP/IP
protocol stack interconnecting hundreds of millions
of hosts around the world

• Therefore, we should not confuse the Web with the
Internet

• Web pages are documents written in HTML
(Hypertext Markup Language) and interconnected
through links (links)

Computer Networks - 5. Application layer (HTTP) 3

1. Introduction - What is the Web?
• The Web is based on the client-server model
• The application-level protocol for communicating clients

and servers on the Web is HTTP (Hypertext Transfer
Protocol)

• Web resources are identified with a unique name called
web address or URL (Uniform Resource Locator)

• Default port for web servers: 80

Computer Networks - 5. Application layer (HTTP) 4

HTTP request
HTTP response

Client (browser) Server (web server)

HTTP
TCP
IP

1. Introduction - What is the Web?
• A web server sends the files it has stored on its
hard drive to HTTP clients requesting it

• Any type of file can be used, although the usual are
the files that a browser recognizes (html, jpg, png,
pdf ...)

• When it receives a request, it returns the file of the
hard disk that fits the route indicated in the URL

Computer Networks - 5. Application layer (HTTP) 5

http://www.myserver.com:port/file/path/file.txt?key=value#fragment

Server (host name
with or IP address)

Path ResourceSchema
(protocol)

Query AnchorServer
port

Depending on the server, the URLs may be case sensitive. For example:
https://en.wikipedia.org/wiki/Iron_Maiden -- https://en.wikipedia.org/wiki/Iron_maiden

http://www.myserver.com:port/path/del/fichero/fichero.txt?clave=valor#fragmento
https://en.wikipedia.org/wiki/Iron_Maiden
https://en.wikipedia.org/wiki/Iron_maiden

1. Introduction - What is the Web?
• Most used browsers:

− Google Chrome
− Firefox
− Internet Explorer → Edge
− Safari
− Opera

• Most used web servers:
− Apache
− Internet Information Server (IIS)

Computer Networks - 5. Application layer (HTTP) 6

→

1. Introduction - HTML
• Hypertext Markup Language (HTML) is the standard

markup language for creating web pages
• Web browsers receive HTML documents from a web

server or local storage and render the documents into
multimedia web pages

• HTML elements are the building blocks of HTML pages
− Images, links, paragraphs, tables, forms, etc. may be embedded

into a we page
− HTML elements are delineated by tags, written using angle

brackets, for example:
 Link to URJC


• The current version of HTML is 5

Computer Networks - 5. Application layer (HTTP) 7

1. Introduction - HTML
• Simple example of a web page:

Computer Networks - 5. Application layer (HTTP) 8

<!DOCTYPE html>
<html>
<head>
<title>My first web page</title>
</head>
<body>

<h1>This is a title</h1>

<p>This is parapragh</p>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing

elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua.</p>

Link to URJC

<!-- This is a picture (with absolute path) -->
<img src="https://www.urjc.es/images/Logos/logo-urjc-

negro.png">

</body>
</html>

1. Introduction - HTTP versions
• HTTP/0.9: Original version. Currently obsolete
• HTTP/1.0 (RFC 1945): Old version but still used

− The connections are non-persistent (multiple TCP connections will
be used, one for each requested object)

• HTTP/1.1 (RFC 2616): Current version
− The connections are persistent (the server keeps a TCP connection

open so that the following requests and responses are transmitted
through that connection)

− Allows successive requests (pipelining), i.e. making several
requests to the server without waiting for the response

• HTTP/2.0 (RFC 7540): Supported in browsers since 2015
− The answers can be processed asynchronously (multiplexing)
− The server can send resources to the client before there is a

request (push)

Computer Networks - 5. Application layer (HTTP) 9

https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540

1. Introduction - HTTP versions

Computer Networks - 5. Application layer (HTTP) 10

HTTP/1.0
non-persistent

connection

HTTP/1.1
persistent

connections

HTTP/1.1
pipelining

HTTP/2.0
multiplexing

HTTP/2.0
push

client server

TCP
connection

TCP
release

TCP
connection

TCP
release

client server

TCP
connection

TCP
release

client server

TCP
connection

TCP
release

client server

TCP
connection

TCP
release

client server

TCP
connection

TCP
release

By default
in HTTP 1.0

By default
in HTTP 1.1

As of 2018, HTTP pipelining is not enabled
by default in modern browsers, due to
several issues (multiplexing is used instead)

Table of contents
1. Introduction
2. HTTP 1.1

I. Messages
II. Request methods
III. Response codes
IV. Manual example
V. Basic headers
VI. MIME types
VII. Connection types
VIII. HTML forms
IX. Cookies
X. Web proxy
XI. Web cache

3. HTTPS
4. HTTP 2
5. Takeaways

Computer Networks - 5. Application layer (HTTP) 11

2. HTTP 1.1 - Messages
• There are two types of HTTP messages:

−Request: from client to server
−Response: from server to client (in reply to a
request)

Computer Networks - 5. Application layer (HTTP) 12

client server

request

response

2. HTTP 1.1 - Messages
• The format of requests is as follows:

Computer Networks - 5. Application layer (HTTP) 13

sp=space
cr=carriage return
lf=line feed

GET /index.html HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/4.0
Accept: text/html

For example:

2. HTTP 1.1 - Messages
• The format of responses is as follows:

Computer Networks - 5. Application layer (HTTP) 14

sp=space
cr=carriage return
lf=line feed

HTTP/1.1 200 OK
Date: Fri, 29 Nov 2019 11:30:00 GMT
Server: Apache/2.0.54 (Fedora)
Content-Type: text/html
Content-Length: 119

<!DOCTYPE html>
<html>
<head>
<title>My web page</title>
</head>
<body>

<p>Hello world!</p>
</body>
</html>

For example:

2. HTTP 1.1 - Request methods
• HTTP methods (sometimes referred to as "verbs")
indicate the action that clients take on the web
resource

• HTTP 1.1 (RFC 2616) defines 8 methods:

• There is an extension to HTTP 1.1 (RFC 5789) that
defines a new method:

Computer Networks - 5. Application layer (HTTP) 15

GET POST PUT DELETE HEAD TRACE OPTIONS CONNECT

PATCH

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc5789

2. HTTP 1.1 - Request methods
• GET: Reads of a specific resource (URL)
• POST: Sends data that is processed by a resource (URL)
• PUT: Create a resource
• DELETE: Delete a resource
• PATCH: Requests the server to partially modify a resource

• HEAD: Request an identical response to the one that would
correspond to a GET request, but without the body of the response.
This is useful to know the headers of the answer but without
transporting all the content

• TRACE: Requests the server to send back a response message with
the request sent (echo service). It is used for checking and diagnostic
purposes

• OPTIONS: Requests the server for the supported methods for a given
resource. The answer is obtained in the Allow header

• CONNECT: Used to tell a web proxy to establish a secure connection
(TLS) with a remote client

Computer Networks - 5. Application layer (HTTP) 16
U

se
d

in
 R

ES
T

se
rv

ic
es

Main methods

Methods normally disabled on web servers

2. HTTP 1.1 - Response codes
• 1xx Informative response. For example:

− 101 Protocol Change
• 2xx Successful operation. For example:

− 200 OK
• 3xx Redirection. For example:

− 301 Moved Permanently
− 304 Not Modified

• 4xx Error on the part of the client. For example:
− 401 Unauthorized
− 404 Not Found

• 5xx Server error. For example:
− 500 Internal Error

Computer Networks - 5. Application layer (HTTP) 17

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

2. HTTP 1.1 - Manual example

Computer Networks - 5. Application layer (HTTP) 18

bgarcia@a-a1105-pc01:~$ nc google.com 80
GET / HTTP/1.1
Host: google.com

HTTP/1.1 301 Moved Permanently
Location: http://www.google.com/
Content-Type: text/html; charset=UTF-8
Date: Wed, 27 Nov 2019 16:01:05 GMT
Expires: Fri, 27 Dec 2019 16:01:05 GMT
Cache-Control: public, max-age=2592000
Server: gws
Content-Length: 219
X-XSS-Protection: 0
X-Frame-Options: SAMEORIGIN

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">
<TITLE>301 Moved</TITLE></HEAD><BODY>
<H1>301 Moved</H1>
The document has moved
here.
</BODY></HTML>

In this example we use the Linux command nc to open a TCP
connection to the google.com web server, which is listening to port 80

The response message
is returned by the web
server

The request message is typed manually to simulate a
web client (i.e. a browser) and “talking” HTTP with the
web server

2. HTTP 1.1 - Manual example

Computer Networks - 5. Application layer (HTTP) 19

bgarcia@a-a1105-pc01:~$ nc google.com 80
GET / HTTP/1.1
Host: www.google.com

HTTP/1.1 200 OK
Date: Wed, 27 Nov 2019 15:58:06 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."
Server: gws
X-XSS-Protection: 0
X-Frame-Options: SAMEORIGIN
Set-Cookie: 1P_JAR=2019-11-27-15; expires=Fri, 27-Dec-2019 15:58:06 GMT; path=/;
domain=.google.com
Set-Cookie: NID=192=wtYxfr-G98yu532khddxODSmJ9xs9Dxa6a-
S9gHLmGOUCTvTVOifAR9CNhuC_TWEvgHGdF3M2pTDIPHLakdOzOshsgKHETrehAgFZxP88kidGh-
O1zMEmxvCbGyVrA2NzyZ06FxOk3sC1Gs2OMCPLtVXi_DTxyHNOnch6NgqRfY; expires=Thu, 28-May-2020
15:58:06 GMT; path=/; domain=.google.com; HttpOnly
Accept-Ranges: none
Vary: Accept-Encoding
Transfer-Encoding: chunked

<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage" lang="es">
...
</html>

2. HTTP 1.1 - Basic headers
• Some of the most common headers in requests:

• Some of the most common headers in responses:

Computer Networks - 5. Application layer (HTTP) 20

Header Description Example
Host* Server host name Host: en.wikipedia.org

User-Agent Client identification User-Agent: Mozilla/5.0 …

Accept MIME type Accept: text/plain

Accept-Charset Character encoding Accept-Charset: utf-8

*mandatory header

Header Description Example
Date Date in which the response

was made
Date: Tue, 15 Nov 1994
08:12:31 GMT

Server Server identification Server: Apache/2.4.1
(Unix)

Content-Type MIME type (and optionally,
encoding)

text/html; charset=UTF-8

Content-Length Body size (in bytes) Content-Length: 348

2. HTTP 1.1 - MIME types
• MIME (Multipurpose Internet Mail Extensions) indicates

the type of content of a message

Computer Networks - 5. Application layer (HTTP) 21

MIME type Typical file extension(s) Description
text/plain .txt Plain text
text/html .html .htm Web page
image/jpeg .jpg .jpeg JPEG image
image/gif .gif GIF image
image/png .png PNG image
application/pdf .pdf PDF file
audio/mpeg3 .mp3 Audio in MP3 format
video/mpeg .mpg .mpeg Video in MPEG format

https://www.iana.org/assignments/media-types/media-types.xhtml

https://www.iana.org/assignments/media-types/media-types.xhtml

2. HTTP 1.1 - Connection types
• By default, connections are non-persistent in HTTP/1.0

and persistent in HTTP/1.1
• This behavior can be changed using the header
Connection:
− Persistent connection (Connection: Keep-Alive).

− Non-persistent (Connection: Close)

Computer Networks - 5. Application layer (HTTP) 22

GET / HTTP/1.1
Host: www.example.com

GET / HTTP/1.0
Host: www.example.com
Connection: Keep-Alive

GET / HTTP/1.1
Host: www.example.com
Connection: Close

GET / HTTP/1.0
Host: www.example.com

2. HTTP 1.1 - HTML forms

Computer Networks - 5. Application layer (HTTP) 23

<!DOCTYPE html>
<html>
<head>
<title>Form with GET</title>
</head>
<body>

<form action="http://pc2.emp2.net/form.php" method="get">
<p>

Name: <input type="text" name="name">

Age: <input type="text" name="age">

<input type="submit">

</p>
</form>

</body>
</html>

Rendered web page in
a web browser

When clicking on the button
“Submit”, browser will send a
HTTP request to the server with
the following message

GET /form.php?name=John+Smith&age=24 HTTP/1.1
Host: pc2.emp2.net
User-Agent: Mozilla/4.5 [en]
Accept: image/jpeg, image/gif, text/html
Accept-language: en
Accept-Charset: iso-8859-1

Web page with form in
HTML using GET

• A common way to send data from client to server is using
HTML forms:

2. HTTP 1.1 - HTML forms

Computer Networks - 5. Application layer (HTTP) 24

<!DOCTYPE html>
<html>
<head>
<title>Form with POST</title>
</head>
<body>

<form action="http://pc2.emp2.net/form.php" method="post">
<p>

Name: <input type="text" name="name">

Age: <input type="text" name="age">

<input type="submit">

</p>
</form>

</body>
</html>

Web page with form in
HTML using POST

Rendered web page in
a web browser

When clicking on the button
“Submit”, browser will send a
HTTP request to the server with
the following message

POST /form.php HTTP/1.1
Host: pc2.emp2.net
User-Agent: Mozilla/4.5 [en]
Accept: image/jpeg, image/gif, text/html
Accept-language: en
Accept-Charset: iso-8859-1
Content-Type: application/x-www-form-urlencoded
Content-Length: 23

name=John+Smith&age=24

2. HTTP 1.1 - Cookies
• HTTP is a stateless protocol, i.e. it does not save any

information about clients
• To save information about the status of clients, HTTP

implements the cookies mechanism
• The technology of cookies is implemented using a couple

of HTTP headers:
− Set-cookie header in responses (from server to client)
− Cookie header on requests (from client to server)
 There are a couple of obsolete headers regarding to cookies: Cookie2

and Set-Cookie2

• Information of cookies is stored both in client and server:
− Cookie file stored in browser
− Cookies database in web server

Computer Networks - 5. Application layer (HTTP) 25

2. HTTP 1.1 - Cookies
• Set-cookie example:

− status=deleted  Cookie name (status) and value (deleted).
This field is mandatory in Set-Cookie

− Path=/  Client must sent the cookie back for further requests
starting with this path (this value is a prefix path)

− Domain=mysite.com  Client must sent the cookie back for further
requests to the same site (if not present, it will be the target server
host name or IP address)

− Expires=Wed, 31-Dec-2030 23:59:59 GMT  Client must sent the
cookie back until this date
 If the date is expired, the cookies is deleted in the client
 If not present, the cookie is not persistent as a file (stored in memory)

− Secure  Cookie can only be sent using HTTPS (TLS)

Computer Networks - 5. Application layer (HTTP) 26

Set-Cookie: status=deleted; Path=/; Domain=mysite.com; Expires=Wed, 31-Dec-2030
23:59:59 GMT; Secure

2. HTTP 1.1 - Cookies
• Cookie example:

− Previously received pairs of name=value separated by ; are sent
by client to server

− Stored cookies are sent from client to server when:
1. Cookie not expired (Expires)
2. Requests has same domain (Domain)
3. URL stars with the same prefix (Path)

Computer Networks - 5. Application layer (HTTP) 27

Cookie: status=deleted; user=john; edited=false

2. HTTP 1.1 - Cookies
• Example:

Computer Networks - 5. Application layer (HTTP) 28

Browser Web server
GET / HTTP/1.1

Host: example.com

HTTP/1.1 200 OK
Set-Cookie: session=12345; Path=/

Cookies database

Server creates an
entry in the
cookies database

Cookie file

Client stores
cookies locally

GET / HTTP/1.1
Host: example.com

Cookie: session=12345

HTTP/1.1 200 OK

2. HTTP 1.1 - Web proxy
• In networking, a proxy is a server that intercepts
network connections made from client to servers
−Motivation for the use of proxies: performance

improvement (cache), monitoring, filtering
• A web proxy is a type of proxy that intercepts
HTTP traffic

Computer Networks - 5. Application layer (HTTP) 29

Network

Without proxy

Network

With proxy

Global cache

2. HTTP 1.1 - Web proxy

Computer Networks - 5. Application layer (HTTP) 30

Browser Web proxy Web server

GET http://server.com/index.html
HTTP/1.1

HTTP/1.1 200 OK
Via: 1.1 www3:8080

Age: 0

Request using proxy
includes the complete
URL in the request line

GET /index.html
HTTP/1.1

HTTP/1.1 200 OK

Resources obtained
from a global cache can
be sent together with
the following headers:
• Via: name of the

proxy (in this
example www3)

• Age: time in seconds
the object has been
in a proxy cache (in
this example 0)

TCP handshake

TCP handshake

2. HTTP 1.1 - Web proxy

Computer Networks - 5. Application layer (HTTP) 31

Browser Web proxy Web server

GET http://server.com/index.html
HTTP/1.1

HTTP/1.1 200 OK
Via: 1.1 www3:8080

Age: 0

GET /index.html
HTTP/1.1

HTTP/1.1 200 OK

TCP handshake

TCP handshake

CONNECT server.com HTTP/1.1

HTTP/1.1 200 OK

TLS handshake

When the final web
server is accessed
using HTTPS, the
method CONNECT is
used first

From here proxies only
sees encrypted
payloads

2. HTTP 1.1 - Web cache
• In addition to global caches (in proxies),
browsers also maintains another cache for
web resources (known as local cache)

• The objective is to improve performance
and reduce latency by avoiding HTTP
transfers of resources that have not
changed

Computer Networks - 5. Application layer (HTTP) 32

Network

Local cache

2. HTTP 1.1 - Web cache
• Resource are stored in a cache together with an
expiration time
−Before this expiration time, the resource is fresh and

can be used without requesting again (this called cache
hint)

−After the expiration time, the resource is stale, and
cannot be used again without revalidation (forwarding
the request to check if it is in fact still fresh)
 Revalidation can also be triggered when the user presses

the reload button
• Caches have finite storage so items are periodically
removed. This process is called cache eviction

Computer Networks - 5. Application layer (HTTP) 33

2. HTTP 1.1 - Web cache
• The freshness (in seconds) of a resource is
calculated based on several headers:
1. If the header Cache-control: max-age=N is

specified:
2. If this header is not present, the headers

Expires and the Date are used:

3. If neither header is present, the headers Last-
Modified and the Date are used:

• Finally, the expiration time of a resource is
computed as follows:

Computer Networks - 5. Application layer (HTTP) 34

freshness = N

freshness = value(Expires) – value(Date)

freshness = [value(Date) – value(Last-Modified)] / 10

expirationTime = responseTime + freshness - currentAge

2. HTTP 1.1 - Web cache
• Cache-Control is a general-header used to
specify directives for caching mechanisms (in both
requests and responses)

• The main values of Cache-Control in responses
are the following (can be concatenated with ,):
- public: resource can be cached anywhere
- private: resource can be cached only in private

caches (option by default)
- max-age=X: valid time in seconds
- no-store: resource cannot be cached
- no-cache: a resource is cached but needs to be

revalidated always (equivalent to max-age=0)
- must-revalidate: equivalent to no-cache but servers

are supposed to send the error code 504 if revalidation
is not possible

Computer Networks - 5. Application layer (HTTP) 35

Cache-Control: private, max-age=86400 Example

2. HTTP 1.1 - Web cache
• The header Expires (introduced in HTTP
1.0) is used to establish the absolute time in
which a resource is valid. For example:

• If it is sent together with Cache-Control,
Cache-Control has priority

Computer Networks - 5. Application layer (HTTP) 36

Expires: Wed, 21 Oct 2020 07:28:00 GMT

2. HTTP 1.1 - Web cache
• The revalidation process can be done in two
ways. The strong validation mechanism
use the following headers:
−ETag: Unique identifier of a resource
Typically it is the hash of the resource
Every time the resource changes, the ETag is
changed as well in the server-side

−If-None-Match: ETag value used by a client to
revalidate a resource (find out if a cached
resource has changed or not)

Computer Networks - 5. Application layer (HTTP) 37

2. HTTP 1.1 - Web cache

Computer Networks - 5. Application layer (HTTP) 38

Browser Web server
GET /file HTTP/1.1
Host: server.com

HTTP/1.1 200 OK
Cache-Control: max-age=86400

ETag: "1abcxyz"

(data)

Local
cache

GET /file HTTP/1.1
Host: server.com

If-None-Match: "1abcxyz"

HTTP/1.1 304 Not Modified
Cache-Control: max-age=86400

ETag: "1abcxyz

Client stores
resource in the
local cache

Client reads
resource from
the local cache

In 1 day in this
example, cache
hint will occur.
After, revalidation
is required

2. HTTP 1.1 - Web cache
• The weak validation mechanism use the
following headers (it is considered weak
because it only has 1 second resolution):
−Last-Modified: date and time at which the
server believes the resource was last modified

−If-Modified-Since: date and time used by a
client to revalidate a resource (find out if a
cached resource has changed or not)

• If both strong and weak validation is used in
request (), strong is preferred

Computer Networks - 5. Application layer (HTTP) 39

2. HTTP 1.1 - Web cache

Computer Networks - 5. Application layer (HTTP) 40

Browser Web server

GET /file HTTP/1.1
Host: server.com

HTTP/1.1 200 OK
Date: Wed, 5 Apr 2018 0:04:12 GMT

Last-Modified: Mon, 3 Apr 2018 0:04:12 GMT

(data)

Local
cache

GET /file HTTP/1.1
Host: server.com

If-Modified-Since: Mon, 3 Apr 2018 0:04:12 GMT

HTTP/1.1 304 Not Modified
Date: Wed, 5 Apr 2018 10:00:00 GMT

Last-Modified: Mon, 3 Apr 2018 0:04:12 GMT

Client stores
resource in the
local cache

Client reads
resource from
the local cache

In 4.8 hours in this
example, cache
hint will occur.
After, revalidation
is required

2. HTTP 1.1 - Web cache
• The header Cache-Control can be used
also in requests. In this case, their values
(can be concatenated) are interpreted as
follows:
- no-cache: resource cannot proceed from a cache

without being revalidated
- no-store: resource cannot be cached (in a proxy for

example)
- max-age=X: client requires an cached answer only if the

resource age is less or equal than X (seconds)

Computer Networks - 5. Application layer (HTTP) 41

Table of contents
1. Introduction
2. HTTP 1.1
3. HTTPS
4. HTTP 2
5. Takeaways

Computer Networks - 5. Application layer (HTTP) 42

3. HTTPS
• HTTPS (Hypertext Transfer Protocol Secure) is the

secure version of HTTP
• With HTTPS you get that sensitive information (keys,

etc.) can not be intercepted by an attacker, since all you
will get will be an encrypted data flow that will be
impossible to decipher

• TLS (Transport Layer Security) is a protocol that
provides encryption over TCP connections

• Default port for web servers that use HTTPs: 443

Computer Networks - 5. Application layer (HTTP) 43

HTTPS
TLS
TCP
IP

3. HTTPS

Computer Networks - 5. Application layer (HTTP) 44

• TLS
handshake
in HTTPS: ServerHello

Certificate

ServerHelloDone

Finished

ChangeCipherSpec

ClientHello

ChangeCipherSpec

Finished

client server

ClientKeyExchange
The server obtains the pre-
master key by deciphering the
message sent by the client,
using its private key. The MS
is obtained from the pre-
master

When sending the certificate
the server is sending its public
key to the client

Data exchange through
symmetric encryption

The client generates a pre-
master key that will be
used to generate the MS
master key with which all
session data will be
encrypted. This key is sent
encrypted with the server's
public key, obtained from
the certificate

3. HTTPS
• A secure web server must have a certificate issued by a

certification authority (CA)
• Browsers have a list of known CAs
• Upon receiving an invalid certificate, it shows a security

alert to the user. This occurs when:
− The certificate signed by an unknown CA
− The certificate has expired

Computer Networks - 5. Application layer (HTTP) 45

Table of contents
1. Introduction
2. HTTP 1.1
3. HTTPS
4. HTTP 2
5. Takeaways

Computer Networks - 5. Application layer (HTTP) 46

4. HTTP 2
• HTTP 2.0 introduces improvements aimed at decreasing

latency:
− Multiplexing requests (responses can be processed asynchronously)
− Push service (the server can send resources before there is an explicit

request from the client)
− Header compression (through a mechanism called HPACK, defined in

RFC 7541)
− HTTP 2 talks all the semantics of HTTP 1.1 (verbs, headers,

responses) but the protocol becomes binary instead of textual

Computer Networks - 5. Application layer (HTTP) 47

https://tools.ietf.org/html/rfc7541

Table of contents
1. Introduction
2. HTTP 1.1
3. HTTPS
4. HTTP 2
5. Takeaways

Computer Networks - 5. Application layer (HTTP) 48

5. Takeaways
• HTTP (Hypertext Transfer Protocol) is the application
layer protocol of the Web
−Clients: browsers (Chrome, Firefox, Safari, Edge, Opera)
−Servers: web servers (Apache, IIS)
−The most used version of HTTP is 1.1 (migration to 2.0)
−HTTP over TLS is known as HTTPS

• Clients send requests to servers:
−First line includes method (e.g. GET, POST) and URL
−Header examples: Host, If-None-Match, ...

• Servers sends responses to clients:
−First line includes status code (e.g. 200, 404, …)
−Headers in responses: Content-Type, Content-Length,
Cache-Control, ...

Computer Networks - 5. Application layer (HTTP) 49

	Computer Networks
	Table of contents
	Table of contents
	1. Introduction - What is the Web?
	1. Introduction - What is the Web?
	1. Introduction - What is the Web?
	1. Introduction - What is the Web?
	1. Introduction - HTML
	1. Introduction - HTML
	1. Introduction - HTTP versions
	1. Introduction - HTTP versions
	Table of contents
	2. HTTP 1.1 - Messages
	2. HTTP 1.1 - Messages
	2. HTTP 1.1 - Messages
	2. HTTP 1.1 - Request methods
	2. HTTP 1.1 - Request methods
	2. HTTP 1.1 - Response codes
	2. HTTP 1.1 - Manual example
	2. HTTP 1.1 - Manual example
	2. HTTP 1.1 - Basic headers
	2. HTTP 1.1 - MIME types
	2. HTTP 1.1 - Connection types
	2. HTTP 1.1 - HTML forms
	2. HTTP 1.1 - HTML forms
	2. HTTP 1.1 - Cookies
	2. HTTP 1.1 - Cookies
	2. HTTP 1.1 - Cookies
	2. HTTP 1.1 - Cookies
	2. HTTP 1.1 - Web proxy
	2. HTTP 1.1 - Web proxy
	2. HTTP 1.1 - Web proxy
	2. HTTP 1.1 - Web cache
	2. HTTP 1.1 - Web cache
	2. HTTP 1.1 - Web cache
	2. HTTP 1.1 - Web cache
	2. HTTP 1.1 - Web cache
	2. HTTP 1.1 - Web cache
	2. HTTP 1.1 - Web cache
	2. HTTP 1.1 - Web cache
	2. HTTP 1.1 - Web cache
	2. HTTP 1.1 - Web cache
	Table of contents
	3. HTTPS
	3. HTTPS
	3. HTTPS
	Table of contents
	4. HTTP 2
	Table of contents
	5. Takeaways

