Computer Networks

5. Application layer (DNS)

http://bonigarcia.github.io/ boni.garcia@urjc.es

Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación Escuela Técnica Superior de Ingeniería de Telecomunicación Universidad Rey Juan Carlos

2019/2020

URJC I Escuela Técnica Superior de Ingeniería de Telecomunicación

1

Table of contents

- 1. Introduction
- 2. Domain names
- 3. DNS servers
- 4. DNS database
- 5. Name resolution
- 6. DNS messages
- 7. Takeaways

- 1. Introduction
 - I. DNS motivation
 - II. DNS architecture
 - III. DNS service
- 2. Domain names
- 3. DNS servers
- 4. DNS database
- 5. Name resolution
- 6. DNS messages
- 7. Takeaways

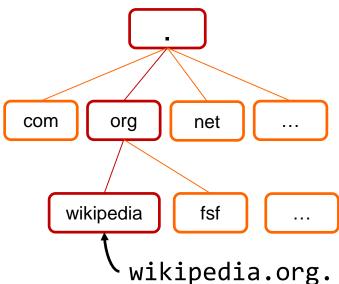
1. Introduction - DNS motivation

- For final users (humans), it is easier to remember names than numbers
 - For instance, it is easier to remember google.es than 216.58.211.195
- DNS (Domain Name System) is an application protocol whose most important feature is to translate (*resolve*) readable names for humans (called **domain names**) into IP addresses and vice versa
 - DNS maps the domain google.es \Rightarrow 216.58.211.195
- DNS has been initially defined in the RFCs <u>1034</u> and <u>1035</u>
- DNS is typically used by other applications (e.g. a web browser)

1. Introduction - DNS architecture

- DNS is a **client-server** application protocol
- The information handled by DNS is stored as a distributed database in a number of distributed servers
 - The most used DNS server is called BIND (Berkley Internet Name Domain), installed on UNIX or GNU/Linux systems
 - The default port in which servers listens to requests is 53
- DNS clients make requests to server to resolve domain names to IP address and vice versa
 - DNS clients are known as *resolvers* (implemented as library in the OS)
 - For example, the host command-line tool
 - Resolvers usually use UDP as transport layer
 - ... except a special case (zone transfer) TCP is used

1. Introduction - DNS service


- DNS provides 3 different services:
- 1. Name resolution:
 - Direct resolution: given a domain name, get the IP address
 - Reverse resolution: given an IP address, get the domain name
- 2. Alias. Pseudonym for domain names
 - For example, a domain called mydomain.com could have an alias www.mydomain.com (both domain names point to the same IP address)
- Load distribution. DNS can be used to balance load to replicated servers (DNS Round Robin). This is useful for specially loaded servers (e.g. mail or web servers)
 - Round Robin is a method to select the elements in a group starting with the first element of the list until the last one in succession

1. Introduction

- 2. Domain names
 - I. Structure
 - II. Types of TLDs
 - III. DNS bodies
 - IV. IDN standard
- 3. DNS servers
- 4. DNS database
- 5. Name resolution
- 6. DNS messages
- 7. Takeaways

2. Domain names - Structure

- Domain names have a hierarchical structure:
 - 1. The top level of the hierarchy is called root and is represented by a dot (.)
 - 2. TLD (Top Level Domain): Identify the type of domain (.com, .org, ...)
 - 3. Domain: Unique name within the TLD
 - It can also contain sub-domains (for instance: es.wikipedia.org.)

- The FQDN (Fully Qualified Domain Name) consists of the concatenation of all the parts of a domain including the point
 - In the example before: wikipedia.org.

2. Domain names - Types of TLDs

- Country code (ccTLD). Used by a country or independent territory (2 letters): For example: .es, .us, .de, .fr, .uk, .jp, ...
 - Second level (SLD). Organizations within a country: .co.uk, .co.jp, ...
- Generic (gTLD). Used by a particular kind of organization. They have three or more letters. For example: .com (commercial), .org (initially non-profit organizations, today without limitation), .net (initially for network infrastructures, today without limitation) ...
- Sponsored (sTLD): There are rules to obtain for the domain.
 For example: .edu (educational purposes), .int (international organizations), ...
- Infrastructure. In this group there is a single TLD: .arpa. It is used in reverse resolution

https://www.iana.org/domains/root/db

2. Domain names - DNS bodies

- Root servers administration: ICANN (Internet Corporation for Assigned Names and Numbers)
 - www.icann.org
- TLD servers: IANA (Internet Assigned Numbers
 Internet Assigned Numbers
 Internet Assigned Numbers Authority

- www.iana.org

- Spanish domains: red.es (public entity dependent on the Ministry of Energy, Tourism, and Digital Agency)
 - <u>www.dominios.es</u>
 - The complete list of registry agents (called *registrars*) of domain .es can be visited in the URL:

http://www.dominios.es/dominios/es/agentes-registradores/todos-los-agentes-registradores

9

2. Domain names - IDN standard

- Initially, the domain names were alphanumeric strings (with '-' as the only allowed symbol)
- IDN (Internationalized Domain Name) is an extension to DNS that allows (since 2005) that a domain name contains non-ASCII characters (even emojis)
- Examples: <u>http://canción.com/</u>, <u>http://pequeñin.com/</u>, <u>https://i♥.ws/</u>
- In IDN, instead of redefining the existing DNS infrastructure, what is done with non-ASCII domain names is to convert it to an ASCII-based form called **Punycode** (<u>RFC 3492</u>)
- Example: españa.es = xn--espaa-rta.es
- Punycode online converter: <u>http://punycode.es/</u>
- In practice these domains are not very common

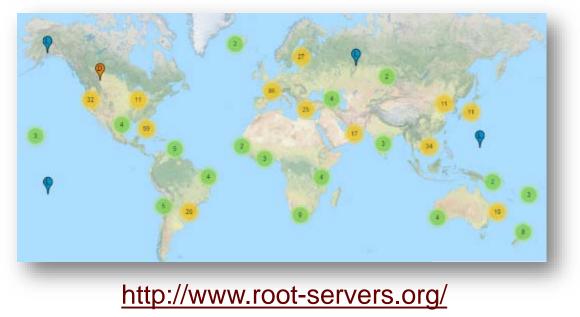
- 1. Introduction
- 2. Domain names
- 3. DNS servers
 - I. Types
 - II. Root servers
- 4. Name resolution
- 5. DNS database
- 6. DNS messages
- 7. Takeaways

3. DNS servers - Types

- Depending on the hierarchy, we distinguish between:
 - Root servers. There are 13 root servers (labeled from A to M) replicated throughout the world
 - These severs know all TLD servers
 - Top Level Domain (TLD) server. Server for each of the zones .com, .es, .net, etc.
 - These severs know all next level servers in their zones
 - Second-level domain servers
 - Third-level domain servers

- ...

3. DNS servers - Types


- Depending on the response provide by servers, we distinguish between:
 - Authoritative servers: These servers actually resolve the domain names in their area of authority. If not, it will return a list of servers to ask. There are two kinds:
 - Non-authoritative servers (also known as local servers): They are not able to perform name resolution by themselves and perform recursive requests (or use a cached value)

3. DNS servers - Types

- Depending on how the information is stored, we distinguish between:
 - Primary (master): Main copy of the zone information
 - Secondary (slave): Replica of the primary
- Zone transfer is the process by which the content of an authoritative server is copied from a primary (master) server to a secondary (slave) server
 - The messages exchanged in this process use TCP
 - A zone transfer happens in any of the following scenarios:
 - When there are changes in the main zone file
 - When starting the DNS service on the secondary server
 - When the expiration time is over

3. DNS servers - Root servers

- Root servers store a list of the domain names and IP addresses of all the TLD servers
- The nearest geographical DNS server is located
 - This type of traffic is called **anycast**, ant it is implemented thanks to BGP

3. DNS servers - Root servers

Host name	IP Address	Operator
a.root-servers.net	198.41.0.4	VeriSign, Inc.
b.root-servers.net	192.228.79.201	University of Southern California (ISI)
c.root-servers.net	192.33.4.12	Cogent Communications
d.root-servers.net	199.7.91.13	University of Maryland
e.root-servers.net	192.203.230.10	NASA (Ames Research Center)
f.root-servers.net	192.5.5.241	Internet Systems Consortium, Inc.
g.root-servers.net	192.112.36.4	US Department of Defense (NIC)
h.root-servers.net	128.63.2.53	US Army (Research Lab)
i.root-servers.net	192.36.148.17	Netnod
j.root-servers.net	192.58.128.30	VeriSign, Inc.
k.root-servers.net	193.0.14.129	RIPE NCC
l.root-servers.net	199.7.83.42	ICANN
m.root-servers.net	202.12.27.33	WIDE Project

- 1. Introduction
- 2. Domain names
- 3. DNS servers
- 4. DNS database
- 5. Name resolution
- 6. DNS messages

7. Takeaways

4. DNS database

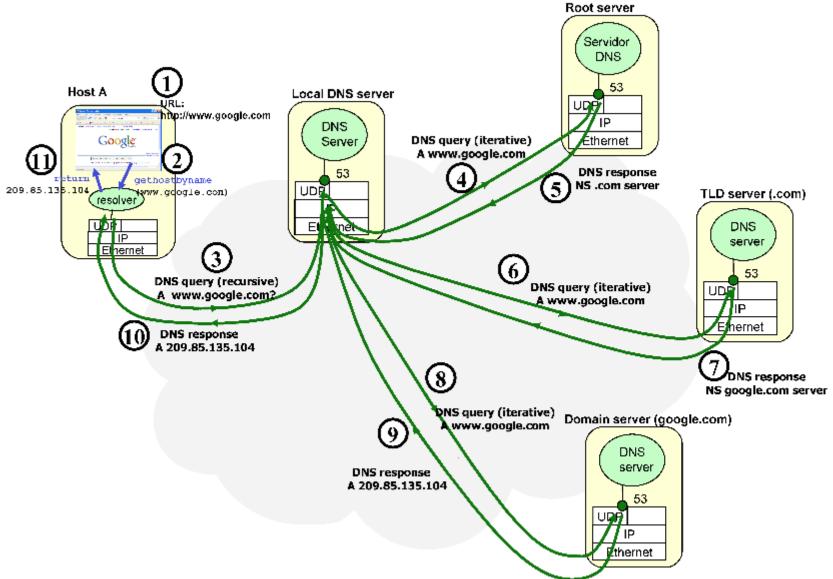
- The information handled by DNS is stored as a distributed database
- Each record in this database is called RR (Resource Record)
- Each RR has 5 fields:
 - -Name: Name of the node (domain name or IP address)
 - -TTL: Time that the RR is valid (by default in seconds)
 - -Class: In practice the class is always IN (Internet)
 - -Type: Kind of RR (see next slide)
 - -Value: RR data

4. DNS database

- The types of RR registries are the following:
 - -SOA: (Start of Authority): Configuration of the zone
 - -A: Hostname for IPv4 address
 - -AAAA: Hostname for IPv6 address
 - -NS: DNS server
 - -MX: Email server
 - -CNAME: Alias of a host
 - -PTR: Reverse translation (using the special domain in-addr.arpa.)

4. DNS database

- A set of RRs handled in a DNS server is called DNS map
- Example of a DNS map (for BIND servers):

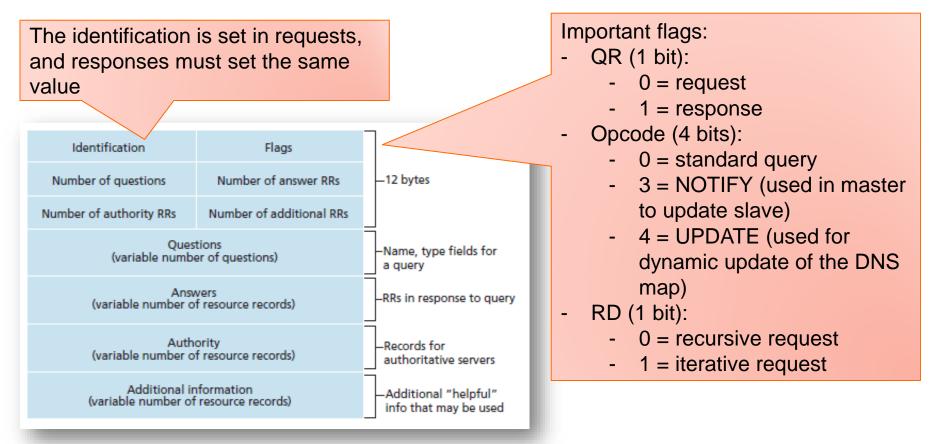

Name	TTL C	lass	Туре \	/alue
<pre>\$ORIGIN gsyc.es \$TTL 86400 gsyc.es.</pre>				<pre>names not ending in . TTL in seconds (equivalent to 1d or 24h) ns1.gsyc.es. admin-gsyc.gmail.com. (2016030201 ; serial 8h ; refresh 2h ; retry 7d ; expire 1d) ; negative cache ttl</pre>
<pre>gsyc.es. gsyc.es. ns1.gsyc.es. ns2.gsyc.es. tierra.gsyc.es.</pre>	2h	IN IN IN IN IN		ns1.gsyc.es. ns2.gsyc.es. mail.gsyc.es. 193.147.71.5 193.147.71.6 193.147.71.7
<pre>hielo.gsyc.es. agua.gsyc.es. fuego.gsyc.es. www.gsyc.es. mail.gsyc.es. aulas.gsyc.es. ns.aulas.gsyc.es</pre>	4h	IN IN IN IN IN IN	A CNAME	193.147.71.8 193.147.71.9 193.147.71.10 agua.gsyc.es. fuego.gsyc.es. ns.aulas.gsyc.es. 212.135.11.45

- 1. Introduction
- 2. Domain names
- 3. DNS servers
- 4. DNS database
- 5. Name resolution
 - I. Direct resolution
 - II. Reverse resolution
- DNS messages
 Takeaways

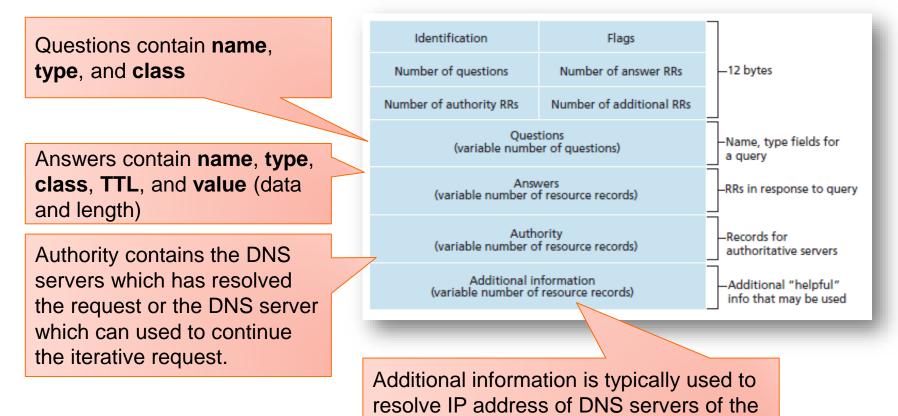
5. Name resolution

- There are two types of DNS queries (made by clients):
- 1. Recursive query
 - Server is forced to make all necessary queries to resolve a domain
 - This is the usually way in which DNS clients work
- 2. Iterative query
 - Server replies with the most accurate information about the name resolution (usually the IP address of the next sub-domain)
 - This is the usually way in which DNS servers work
- To improve performance, server maintain caches with resolved requests
 - Cache is updated when a server makes a resolution for the first time
 - Clients can also use caches, although it is not usual

5. Name resolution - Direct resolution


5. Name resolution - Reverse resolution

- The .in-addr.arpa domain is used for reverse resolution, mapping IP address to hostnames
 - This name has historical origins: it is an acronym for inverse addresses in the Arpanet (the predecessor to today's Internet)
- The elements of the reverse domain are the network addresses built by inverting the numbers that compose it, and ending in in-addr.arpa.
 - For example: the network 138.117.0.0 is the reverse domain 117.138.in-addr.arpa.
- Reverse RRs uses the type PTR
 - There is no technical requirement for PTR records
 - They were designed as a matter of convenience. However, they have become required by some security schemes


- 1. Introduction
- 2. Domain names
- 3. DNS servers
- 4. DNS database
- 5. Name resolution
- 6. DNS messages

7. Takeaways

- There are two main types: requests and responses
- Both types of messages have the same structure:

- There are two main types: requests and responses
- Both types of messages have the same structure:

authority section

• Example: request message

Transaction ID	number that identifies the query
Flags	Response Flag : Indicates whether it is a query (flag = 0) or an answer (flag = 1). In this case it will be 0. Recursion desired : Indicates whether the query is performed in recursive mode (flag = 1) or iterative (flag = 0).
Questions	1
Answer RRs	0
Authority RRs	0
Additional RRs	0
Queries	Registration requested in the DNS server query, for instance:
	\bigtriangledown Queries $ ightarrow$
	pc2.emp2.net: type A, class IN

• Example: response with the requested record

Transaction ID	same number that in the request message		
Flags	Response Flag : Indicates whether it is a query (flag $= 0$) or an answer (flag $=$		
	1). In this case it will be 1.		
Questions	1		
Answer RRs	1		
Authority RRs	1		
Additional RRs	1		
Queries	Copy of the DNS query, for instance:		
	\bigtriangledown Queries $ ightarrow$		
	pc2.emp2.net: type A, class IN		
Answers	A record containing the answer, for instance:		
	\bigtriangledown Answers \rightarrow		
	\bigtriangledown pc2.emp2.net: type A, class IN, addr 14.0.0.100		
	Name: pc2.emp2.net		
	Type: A (Host address)		
	Class: IN (0x0001)		
	Time to live: 1 day		
	Data length: 4		
	Addr: 14.0.0.100		
Authoritative nameservers	NS record of the server which has provided the answer, for instance:		
	\bigtriangledown Authoritative nameservers \rightarrow		
	<pre>emp2.net: type NS, class IN, ns dnsemp2.emp2.net</pre>		
Additional records	A record of the server which has provided the answer, for instance:		
	\bigtriangledown Additional records $ ightarrow$		
	dnsemp2.emp2.net: type A, class IN, addr 14.0.0.10		

• Example: response without the requested record, redirecting to a different server

Transaction ID	same number that in the request message
Flags	Response Flag : Indicates whether it is a query (flag = 0) or an
	answer (flag = 1). In this case it will be 1.
Questions	1
Answer RRs	0
Authority RRs	1
Additional RRs	1
Queries	Copy of the DNS query, for instance:
	\bigtriangledown Queries \rightarrow
	pc2.emp2.net: type A, class IN
Authoritative nameservers	NS record of other server which can help to provide the answer,
	for instance:
	\bigtriangledown Authoritative nameservers $ ightarrow$
	net: type NS, class IN, ns dnsnet.net
Additional records	A record of other server which can help to provide the answer,
	for instance:
	\bigtriangledown Additional records $ ightarrow$
	dnsnet.net: type A, class IN, addr 13.0.0.10

- 1. Introduction
- 2. Domain names
- 3. DNS servers
- 4. DNS database
- 5. Name resolution
- 6. DNS messages

7. Takeaways

7. Takeaways

- DNS (Domain Name System) is an application protocol whose most important feature is to translate (*resolve*) readable names for humans (called **domain names**) into IP addresses (direct resolution) and vice versa (reverse resolution)
- DNS have a hierarchical structure (names and servers):
 - Root \rightarrow TLD \rightarrow Domain server
- DNS info is stored as a distributed database:
 - Each record in this database is called **RR** (Resource Record)
 - A set of RRs handled in a DNS server is called **DNS map**
 - Relevant RR types are:
 - SOA: Configuration of the zone
 - A: Hostname for IPv4 address
 - NS: DNS server
 - PTR: Reverse translation (using the special domain in-addr.arpa.)