Computer Networks

1. Introduction

Boni García

http://bonigarcia.github.io/ boni.garcia@urjc.es

Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación Escuela Técnica Superior de Ingeniería de Telecomunicación Universidad Rey Juan Carlos

2019/2020

Table of contents

- 1. Basic concepts
- 2. Networks types
- 3. Internet
- 4. Protocol stacks
- 5. Takeaways

Table of contents

- 1. Basic concepts
 - I. Telecommunication network
 - II. Computer
 - III. Computer network
 - IV. Protocol stack
 - V. Standardization bodies
- 2. Networks types
- 3. Internet
- 4. Protocol stacks
- 5. Takeaways

1. Basic concepts - Telecommunication network

 A telecommunications network is a collection of terminal nodes in which links (physical medium) are connected to enable communication between terminals

1. Basic concepts - Computer

 A computer is an electronic device that receives data (*input*), processes it according to a sequence of instructions (*program*) and produces a result (*output*) in the form of information

1. Basic concepts - Computer

- Computers use the binary system internally
- Bit: Binary digit. Only two values allowed: 0 and 1
- Byte: Group of 8 bits operated on as a single unit
- Word: natural unit of data used by a particular processor design (architecture), handled as a unit by the processor (8,16,32,64,...)
- 1000 Bytes = 1 KB, 1000 KB = 1 MB, ...
- 1024 Bytes = 1 KiB, 1024 KiB = 1 MiB, ...

1. Basic concepts - Computer Network

- A computer network is a type of telecommunications network which allows nodes to exchange data
- A computers connected to the network is called host
- Hosts are interconnected in the same physical network (called segment) through links (wired or wireless)
- Different network segments can be connected with devices called routers (border routers are usually called gateways)

1. Basic concepts - Computer Network

- The final objective of a computer network is communicate remote processes (i.e. programs running in different computers)
- This is known as a distributed service

1. Basic concepts - Protocol stack

- In order to achieve this objective, we use the divide and conquer principle
- The communications architecture is divided in layer in the so-called protocol stack (also known as reference model)
- Each entity o a given level in a protocol stack is focused in a given problem and provides a service to the upper level
- Each entity communicates with a peer entity (i.e. of the same level) using a given protocol

1. Basic concepts - Protocol stack

Analogy:

1. Basic concepts - Protocol stack

Service:

- It is the set of operations (primitives) that an entity of level N offers to the entity of level N + 1
- An N-level entity uses the services provided by the N-1 entity
- The services are available through its interface, and it has a unique address that identifies it

Protocol:

- It is the set of rules (message format, order, actions to be performed)
 that allow to communicate two or more remote entities
- An entity is an element (software or hardware) that implements the protocol. The same level entities are called peer entities
- The data units that are exchanged by the peer entities are known as the PDU (Protocol Data Unit)

1. Basic concepts - Standardization bodies

- Protocol stacks are effective if adopted by the different hosts in the communication
- To achieve this interoperability, there are different organizations that promote standards (standardization bodies), for example:
 - International Organization for Standardization (ISO)
 - Institute of Electrical and Electronics Engineers (IEEE)
 - International Telecommunication Union -Telecommunication Standardization Sector (ITU-T)
 - Internet Engineering Task Force (IEFT)
 - Internet Assigned Number Authority (IANA)

Table of contents

- 1. Basic concepts
- 2. Network types
 - Switching technique
 - II. Size
 - III. Topology
- 3. Internet
- 4. Protocol stacks
- 5. Takeaways

2. Network types

- We can classify telecommunication networks (not only computer networks) using different criteria:
- Switching technique (how the data traverses the path between the source and destination node in the network)
- 2. Size (extension of the network)
- **3. Topology** (structure of the network)

- There are two main types of switching techniques:
 - Circuit switching is a switching technique that establishes a dedicated path between sender and receiver
 - The packet switching is a switching technique in which the message is divided into smaller pieces (known as packages), and they are sent individually. Packet switching is divided into 2 sub-categories:
 - Connection-oriented
 - Connectionless

- In a circuit switching network there is a dedicated path (circuit) between the terminal nodes
- All information follows the same path
- The circuit is established using signaling
- Example: Public Switched Telephone Network (PSTN)

- In a packet switching network the messages are spited in smaller pieces called packets
- The intermediate nodes (routers) store and forward the packages, routing them to the destination
- Once the packages reach their destination, the message is reassembled

Circuit vs packet switching:

Circuit switching	Packet switching
Convenient for real-time communication services (e.g. voice calls)	✓ More efficient resource sharing
Inefficiency in resource management (dedicated circuits are actually used or not)	It may be inappropriate for real-time services because delays are variable and unpredictable (queue delays)

 There are two types of packet switching technique:

1. Connection-oriented:

- Also known as virtual circuit switching
- For example, X.25, ATM, Frame Relay networks

2. Connectionless:

- Also known as datagram switching
- Each packet contains the information to reach the destination
- For example: IP networks, such as the Internet

There are two types of packet switching networks:

1. Connection-oriented:

- Also known as virtual circuit switching
- There are three phases in a communication: setup, transfer and release
- Only setup packets contains source and destination address
- The route is determined in the setup phase and all packages follow the same path
- For example: X.25, ATM, Frame Relay

There are two types of packet switching networks:

2. Connectionless:

- Also known as datagram switching
- There are no setup nor release phases
- Each packet contains the information to reach the destination
- Packages can follow different routes
- Packages can reach destination unordered or even get lost (besteffort network)
- For example: IP networks, such as the Internet

Connection-oriented vs connectionless:

Connection-oriented	Connectionless
The network provides error control. Since there is a virtual circuit, packets are sent faster (switching can be done even by hardware, for example in ATM)	Very flexible (if a node fails, alternative routes can be found)
Less flexible (if a node fails, all virtual circuits of that node fail)	It may be inappropriate for real- time services because delays are variable and unpredictable.

2. Network types - Size

 The most relevant network types depending of its size are:

Network type	Distance	Coverage
Personal Area Network (PAN)	10 m	Room, person
Local Area Network (LAN)	100 - 1000 m	Home, company
Wide Area Network (WAN)	1 - 1000 km	City, country, continent
Internet	10000 km	Planet

2. Network types - Topology

 Network topology is the layout of the connections (links, nodes) of a computer network

Table of contents

- 1. Basic concepts
- 2. Networks types
- 3. Internet
 - I. Definition
 - II. Structure
 - III. Net neutrality
- 4. Protocol stacks
- 5. Takeaways

3. Internet - Definition

- The Internet is a decentralized global system of interconnected computer networks that use the Internet protocol stack (TCP/IP) to connect hosts worldwide
- Internet is based on the network protocol IP (connectionless packet switching)

http://www.opte.org/

Internet = *network* of *networks*

3. Internet - Structure

Internet is structured in 3 tiers:

- The Internet backbones (tier-1) networks are composed of a large number of core routers (usually between continents and countries)
- Core routers are connected to a large number of tier-2 routers
- The companies that manage tier-1 routers are:
 - Sprint, Verizon, MCI (formerly UUNet / WorldCom), AT&T, NTT, Level3, Qwest and Cable & Wireless

Internet backbones (Level3):

Internet backbones (Verizon):

Internet backbones (Verizon):

- Tier-2 are regional Internet Service Providers (ISPs) which connects tiers 1 and 3
- Tier-2 providers will exchange Internet traffic through two types of connections:
 - **Transit**: Connection between operators of different tiers. The ISP supplier sells traffic ISP consumer
 - Peering: Connection between the same tier. This connection can be public (using an IXP, Internet Exchange Point) or private (using a direct link between ISPs)
- Examples of tier 2 ISPs: British Telecom, SingTel, Cable&Wireless, ...

- An IXP (Internet Exchange Point) is a physical infrastructure that allows different ISPs to exchange traffic
- Map of IXPs: https://www.internetexchangemap.com/
- Spanish IXP examples:
 - ESPANIX (Madrid)
 - CATNIX (Barcelona)
 - NIXVAL-ix (Valencia)

ESPANIX peering:

- 01 Acens AS 16371 02 Adamo AS 35699 03 Akamai AS 20940 04 Arsys AS 20718
- 05 AT&T GNS AS 2686 06 BT Global Services AS 8903 - AS 5400
- 07 BT IGS AS 12541
- 08 Cable & Wireless AS 1273
- 09 COLT Telecom AS 8220
- 10 Cogent Communications AS 174
- 21 Ibercom AS 15915
- 22 Init7 AS 13030
- 23 Interoute AS 8928
- 24 Jazztel AS 12715
- 25 Leaseweb AS 16265
- 26 Level 3 AS 3356
- 27 NTT Communications AS 2914
- 28 Ono AS 12457
- 29 Ono (Auna) AS 16338
- 30 Orange AS 12479
- 41 T-Systems España AS 3257
- 42 Veloxia AS 28842
- 43 Verizon AS 702
- 44 Vodafone AS 12430
- 45 Ya.com Internet Factory AS 20838

- 11 Comvive AS 39020
- 12 Datagrama AS 9019
- 13 Dinahosting AS 42612
- 14 Easynet AS 4589
- Euskaltel AS 12338
- 16 Flag Telecom AS 15412
- 17 Fujitsu AS 3324
- 18 Gas Natural AS 42325
- 19 Genetsis AS 16168
- 20 GRN Serveis Telematics AS 20815
- 31 OVH AS 16276
- 32 Panther Express AS 36408
- 33 Produban AS 2134
- 34 RedIRIS AS 766
- 35 Relco AS 12359
- 36 SAREnet AS 3262
- 37 Servicom2000 AS 9165
- 38 Telefónica AS 3352
- 39 Teleglobe AS 6453
- 40 Teremark AS 23148

- Tier-3 ISPs are companies that provide Internet access to final users
- Users are connected to Internet with the so-called access networks
- Examples of ISPs in Spain: Movistar, Vodafone, Orange, Yoigo, Ono, Jazztel, Euskaltel, ...
- The main technologies of access networks are:
 - Dial-up access (through the telephone network)
 - Digital Subscriber Line (DSL)
 - Cable Internet access
 - Fiber To The Home (FTTH)
 - Satellite
 - Mobile networks (2.5G / 3G / 4G / 5G)

Wired

Wireless

3. Internet - Net neutrality

- Net neutrality (or network neutrality) is the principle that ISPs must treat all Internet communications equally, and not discriminate or charge differently based on user, content, application, equipment, etc.
- This principle is in the Internet since its origins
- It is applied by regulatory entities (governments) and must be met primarily by ISP
- Example of not respecting the principle of net neutrality: in 2008 the North American ISP Comcast reduced the upload speed of applications that used P2P to share files

Table of contents

- 1. Basic concepts
- 2. Networks types
- 3. Internet
- 4. Protocol stacks
 - I. TCP/IP
 - II. OSI
- 5. Takeaways

 The TCP/IP protocol stack (also kwon as Internet model) is divided in 5 layers:

TCP/IP protocol stack in a nutshell:

Level	Features	PDU	Address
Physical + Link	Communication in the same physical network (segment)	Frame	MAC address
Network	Communication between hosts	Packet	IP address
Transport	Communication between processes	Segment/datagram	Port
Application	Distributed services	Message	-

- A PDU is made up by:
 - Payload: Actual data to be transmitted
 - Header: Extra data aimed to implement the protocol
- Encapsulation is the process in which a PDU becomes the payload of its upper layer PDU

- Hosts in the TCP/IP model implements the full stack (5 levels)
- Intermediate nodes (routers) implements up to network (3 levels)

4. Protocol stacks - OSI

- The OSI (Open System Interconnection) protocol stack is a reference model created by the ISO in 1980
- Nowadays few networks implements this model, although it is very valuable as conceptual model
- In the TCP/IP model, the session (temporary relationship) and presentation (encoding and compression) are implemented at application level (if required)

Table of contents

- 1. Basic concepts
- 2. Networks types
- 3. Internet
- 4. Protocol stacks
- 5. Takeaways

5. Takeaways

- A computer network is a set of devices (e.g. routers) and links which allows to exchange binary data between computers (hosts)
- Internet is a connectionless packet switching global computer network based on the TCP/IP protocol stack
- The TCP/IP reference model is made up by 5 levels: physical + link (communication in the same network segment), network (communication in the whole network), transport (end-to-end communication between process), application (specific service)